Problem 8: Limit $\vec{q} \rightarrow 0$ of the dielectric function

The dielectric function $\varepsilon(\vec{q}, \omega)$ contains matrix elements of the form

$$
I(\vec{q})=\int \psi_{n^{\prime}, \vec{k}+\vec{q}}^{*}(\vec{r}) \mathrm{e}^{i \vec{q} r} \psi_{n, \vec{k}}(\vec{r}) d^{3} r
$$

They describe transitions between the bands n and n^{\prime}. Consider the case of small wave vectors \vec{q}.
The Bloch functions have the form

$$
\psi_{n, \vec{k}}(\vec{r})=\mathrm{e}^{i \vec{k} \vec{r}} u_{n, k}(\vec{r}) \quad \text { and } \quad \psi_{n^{\prime}, \vec{k}+\vec{q}}(\vec{r})=\mathrm{e}^{i(\vec{k}+\vec{q}) r} u_{n^{\prime}, k+q}(\vec{r}) .
$$

a) Use the lattice periodic functions $u_{n, \vec{k}}$ and $u_{n^{\prime}, \vec{k}+\vec{q}}$ to represent $I(\vec{q})$.
b) The lattice periodic functions fulfill the following Schrödinger equations

$$
\hat{H}(\vec{k}) u_{n, \vec{k}}(\vec{r})=E_{n, \vec{k}} u_{n, \vec{k}}(\vec{r}), \quad \hat{H}(\vec{k}+\vec{q}) u_{n^{\prime}, k+\vec{q}}(r)=E_{n^{\prime}, \vec{k}+\vec{q}} u_{n^{\prime}, \vec{k}+q}(\vec{r}) .
$$

Determine $\hat{H}(\vec{k})$ and $\hat{H}(\vec{k}+\vec{q})$.
c) $\hat{U}:=\hat{H}(\vec{k}+\vec{q})-\hat{H}(\vec{k})$ is a small perturbation for small wave vectors \vec{q}. Use first order perturbation theory to represent $u_{n^{\prime}, \vec{k}+\vec{q}}(\vec{r})$ by $u_{n, \vec{k}}(\vec{r})$. Employ this result to calculate $I(\vec{q})$. (Hint: the functions are orthonormal.) Use the matrix elements of the momentum operator

$$
\vec{p}_{n^{\prime}, n}(\vec{k})=\int u_{n^{\prime}, \vec{k}}^{*}(\vec{r}) \hat{\vec{p}} u_{n, \vec{k}}(\vec{r}) d^{3} r
$$

to represent your final result.

Problem 9: Sum rule for dielectric function

A general property (which is called "sum rule") of the dielectric function is discussed in this problem.
a) Consider a Hamilton operator \hat{H} with a complete orthonormal set of eigenfunctions $\left|\psi_{\alpha}\right\rangle$ and an additional operator \hat{A}.
i) Calculate the double commutator $\left[[\hat{H}, \hat{A}]_{-}, \hat{A}\right]_{-}$and show that

$$
\left\langle\psi_{\alpha}\right|\left[[\hat{H}, \hat{A}]_{-}, \hat{A}\right]_{-}\left|\psi_{\alpha^{\prime}}\right\rangle=\sum_{\beta}\left(E_{\alpha}+E_{\alpha^{\prime}}-2 E_{\beta)}\left\langle\psi_{\alpha}\right| \hat{A}\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right| \hat{A}\left|\psi_{\alpha^{\prime}}\right\rangle .\right.
$$

ii) Use the general result of i) together with $\hat{A}=\mathrm{e}^{-i \vec{q} \vec{r}}$ to calculate

$$
\left.S=\sum_{\beta}\left(E_{\alpha}-E_{\beta}\right)\left|\left\langle\psi_{\alpha}\right| \mathrm{e}^{-i \vec{q} \vec{r}}\right| \psi_{\beta}\right\rangle\left.\right|^{2}
$$

b) The imaginary part of a dielectric function is given by

$$
\begin{gathered}
\left.\varepsilon_{2}(\vec{q}, \omega)=\frac{\pi}{\Omega} \frac{\mathrm{e}^{2}}{\varepsilon_{0} q^{2}} \sum_{\substack{\delta, \vec{k}, \overrightarrow{k^{\prime}} \\
n, n^{\prime}}} f\left(E_{n, \vec{k}}\right)\left|\left\langle\psi_{n \vec{k}, \vec{k}}\right| \mathrm{e}^{-i \vec{q} \vec{r}}\right| \psi_{n^{\prime}, \vec{k}}\right\rangle\left.\right|^{2} \\
\cdot\left(\delta\left(E_{n \vec{k}}-E_{n^{\prime} \vec{k}^{\prime}}+\hbar \omega\right)-\delta\left(E_{n \vec{k}}-E_{n^{\prime} \vec{k}^{\prime}}-\hbar \omega\right)\right)
\end{gathered}
$$

A sum rule for $\varepsilon_{2}(\vec{q}, \omega)$ has the form

$$
\int_{0}^{\infty} \omega \varepsilon_{2}(\vec{q}, \omega) d \omega=\alpha \omega_{p}^{2} .
$$

Here, ω_{p} ist the plasma frequency. Use the result of a) to prove this sum rule and to calculate α.
c) The dielectric function in the Drude model has the form

$$
\varepsilon(\omega)=\left(1-\frac{\omega_{p}^{2}}{\omega^{2}+i \gamma \omega}\right) \quad \text { with } \quad \gamma>0 \quad \text { and } \quad \gamma \rightarrow 0 .
$$

ω_{p} is the plasma frequency.

Calculate

a) $\quad \int_{0}^{\infty} \omega \operatorname{Im}(\varepsilon(\omega)) d \omega$,
b) $\quad \int_{0}^{\infty} \operatorname{Im}\left(\frac{1}{\varepsilon(\omega)}\right) d \omega$
by explicit evaluation of the integrals in the limit $\gamma \rightarrow 0$.

Problem 10: Current density operator

The current density operator for a system of N particles with charge Q under the influence of a vector potential \vec{A} is defined in terms of the momentum and position operators $\hat{\vec{p}_{l}}=\frac{\hbar}{i} \vec{\nabla}_{\vec{r}_{l}}$ and $\hat{\vec{r}_{l}}$ of the l-th particle as follows

$$
\vec{J}(\vec{r}, t)=\hat{\vec{j}}(\vec{r})+\hat{\vec{j}}_{\mathrm{dia}}(\vec{r}, t)
$$

with a paramagnetic

$$
\hat{\vec{j}}(\vec{r})=\frac{1}{2} \frac{Q}{m} \sum_{l=1}^{N}\left(\hat{\vec{p}}_{l} \delta\left(\vec{r}-\hat{\vec{r}_{l}}\right)+\delta\left(\vec{r}-\hat{\vec{r}}_{l}\right) \hat{\vec{p}}_{l}\right)
$$

and a diamagnetic part

$$
\hat{\vec{j}}_{\text {dia }}(\vec{r}, t)=-\frac{Q^{2}}{m} \sum_{l=1}^{N} \delta\left(\vec{r}-\hat{\vec{r}}_{l}\right) \vec{A}\left(\hat{\vec{r}}_{l}, t\right) .
$$

i) Calculate $\hat{\vec{J}}(\vec{r}, t)$ in the occupation number representation for a basis of plane waves

$$
\psi_{\vec{k}, \sigma}(\vec{r})=\frac{1}{\sqrt{\Omega}} \mathrm{e}^{i \vec{k} \cdot \vec{r}} \chi_{\sigma} .
$$

ii) Determine the Fourier transform of the operator resulting in i).

