- a) Calculate the following anticommutator relations
 - $[\hat{d}_{v}, \, \hat{d}_{v'}]_{+}$ i)
 - $[\hat{d}_v, \, \hat{d}_{v'}^{\dagger}]_+ \; ,$ ii)
 - $[\hat{c}_l, \, \hat{d}_v]_+$, iii)

b) The intraband part of the dielectric function is given b

$$\varepsilon\left(\vec{q},\,\omega\right) = 1 - \sum_{n\,\vec{k}}\,f\left(E_{n\,\vec{k}}\right) \frac{E_{n\,\vec{k}+\vec{q}} - 2\,E_{n\,\vec{k}} + E_{n,\vec{k}-\vec{q}}}{\left(E_{n\,\vec{k}} - E_{n\,\vec{k}+\vec{q}} + \hbar\left(\omega + i\,\eta\right)\right)\left(E_{n\,\vec{k}-\vec{q}} - E_{n\,\vec{k}} + \hbar\left(\omega + i\,\eta\right)\right)} \cdot \frac{e^{2} \cdot 2}{\varepsilon_{0}\,\Omega\,q^{2}}.$$

Use your result from a) together with the result from the lecture for $\varepsilon(\vec{q}, \omega)$ to prove the F-sum rule in the limit $\vec{q} \to 0$

$$\sum_{n'\neq n} F_{n,n'}(\vec{k}) = 1 - m \, \vec{e}_{\vec{q}} \cdot \overline{\overline{M}}^{-1}(n \, \vec{k}) \cdot \vec{e}_{\vec{q}} \, .$$

Here, m is the electron mass and $\overline{\overline{M}}^{-1}(n\,\vec{k})$ is the tensor of the inverse effective mass (see lecture).

Problem 12: Hole operator

In the discussion of excited states in a semiconductor, it is useful to introduce special creation and annihilation operators \hat{d}_v^{\dagger} , \hat{d}_v for valence band electrons. These operators describe so-called *holes*. Starting from electron creation and annihilation operators \hat{c}_v^{\dagger} , \hat{c}_v , they are defined by

 $\hat{d}_v^{\dagger} = \hat{c}_v$ and $\hat{d}_v = \hat{c}_v^{\dagger}$ for $v = n, \vec{k}$ with $n \in$ valence band.

Problem 11: F-sum rule

In problem 8, perturbation theory (PT) has been employed to calculate the wave function $u_{n\vec{k}+\vec{q}}$. Here, PT should be used to determine the energy $E_{n\,\vec{k}\,\pm\,\vec{q}}$ from $E_{n'\,\vec{k}}$ (for all n').

a) Use *second* order perturbation theory to show that

$$E_{n\vec{k}+\vec{q}} - 2E_{n\vec{k}} + E_{n\vec{k}-\vec{q}} = \lambda \left(1 - \sum_{n'\neq n} F_{n,n'}(\vec{k})\right)$$

(SS 2015)

Determine

respectively.

$$F_{n,n'}(\vec{k}) = \frac{2}{m} \frac{|\vec{e}_q \cdot \langle u_{n\,\vec{k}}|\hat{\vec{p}}|u_{n'\,\vec{k}}\rangle|^2}{E_{n'\,\vec{k}} - E_{n\,\vec{k}}}$$

Hint: Use \hat{U} from problem 8 with \vec{q} and $-\vec{q}$ as perturbation to calculate $E_{n\vec{k}+\vec{q}}$ and $E_{n\vec{k}-\vec{q}}$,

$$\lambda$$
.

The intraband part of the dielectric function is given by

$$E_{n\vec{k}+\vec{q}} - 2E_{n\vec{k}} + E_{n,\vec{k}-\vec{q}} + E_{n,\vec{k}-\vec$$

$$\left(\begin{array}{c}n'\neq n\end{array}\right)$$

$$E_{T} (\vec{k}) = 2 |\vec{e}_q \cdot \langle u_{n\vec{k}} | \hat{\vec{p}} | u_{n'\vec{k}} \rangle|^2$$

(4 points)

(3 points)

Prof. Krüger

1

iv) $[\hat{c}_l, \, \hat{d}_v^{\dagger}]_+ \, .$

b) Consider a system in the ground state which is given in the Hartree-Fock approximation by

$$|\phi_0\rangle = \prod_j \hat{c}_j^{\dagger} |0\rangle$$
 for all $j \in$ valence bands.

Calculate the expectation value for the number operator of a hole $\hat{N}^{\text{hole}} = \sum_{v} \hat{d}_v^{\dagger} \hat{d}_v$ for a state

$$|\phi_1\rangle = \hat{d}^{\dagger}_{v'} \, \hat{c}^{\dagger}_l \, \hat{d}^{\dagger}_{v''} \, |\phi_0\rangle$$

- c) Consider excited states of the form $|\phi_1\rangle = \hat{c}_l^{\dagger} \hat{d}_v^{\dagger} |\phi_0\rangle$. Here, one electron from conduction band l and one hole from valence band v have been created. Determine the following matrix elements
 - i) $\langle \phi_0 | \hat{d}_{v'} \hat{c}_{l'} \quad \hat{c}_{l_1}^{\dagger} \hat{c}_{l_2} \quad \hat{c}_l^{\dagger} \hat{d}_v^{\dagger} | \phi_0 \rangle ,$ ii) $\langle \phi_0 | \hat{d}_{v'} \hat{c}_{l'} \quad \hat{d}_{v_1}^{\dagger} \hat{d}_{v_2} \quad \hat{c}_l^{\dagger} \hat{d}_v^{\dagger} | \phi_0 \rangle ,$ iii) $\langle \phi_0 | \hat{d}_{v'} \hat{c}_{l'} \quad \hat{c}_{l_1}^{\dagger} \hat{c}_{l_2} \hat{d}_{v_1}^{\dagger} \hat{d}_{v_2} \quad \hat{c}_l^{\dagger} \hat{d}_v^{\dagger} | \phi_0 \rangle .$

Problem 13: Bogoliubov transformation

(3 points)

The Hamilton operator of two interacting electrons has the form

$$\hat{H} = A \left(\hat{c}_1^{\dagger} \hat{c}_1 + \hat{c}_2^{\dagger} \hat{c}_2 \right) - B \left(\hat{c}_1^{\dagger} \hat{c}_2^{\dagger} + \hat{c}_2 \hat{c}_1 \right)$$

with the constants A, B > 0. Using the new operators $\hat{\alpha}, \hat{\beta}, \hat{\alpha}^{\dagger}$ and $\hat{\beta}^{\dagger}$ with

 $\hat{c}_1 = u\,\hat{\alpha} + v\,\hat{\beta}^{\dagger}\,, \qquad \hat{c}_1^{\dagger} = u\,\hat{\alpha}^{\dagger} + v\,\hat{\beta}\,, \qquad \hat{c}_2 = u\,\hat{\beta} - v\,\hat{\alpha}^{\dagger}\,, \qquad \hat{c}_2^{\dagger} = u\,\hat{\beta}^{\dagger} - v\,\hat{\alpha}\,,$

 \hat{H} can be transformed into diagonal form. Here, u and v are real constants.

a) Calculate the anticommutators

$$[\hat{\alpha}, \hat{\alpha}^{\dagger}]_{+}, \quad [\hat{\alpha}, \hat{\beta}^{\dagger}]_{+} \text{ and } [\hat{\beta}, \hat{\beta}^{\dagger}]_{+}$$

for the case $u^2 + v^2 = 1$.

b) Use the transformation given above to show that \hat{H} can be put into the form

$$\hat{H} = F\left(\hat{\alpha}^{\dagger}\,\hat{\alpha} + \hat{\beta}^{\dagger}\,\hat{\beta}\right) + G$$

if u and v are chosen in an appropriate way (under the requirement $u^2 + v^2 = 1$). Here, F and G are constants.

c) Determine the ground state energy of the system.