Problem 11: $\quad \boldsymbol{F}$-sum rule

In problem 8, perturbation theory (PT) has been employed to calculate the wave function $u_{n \vec{k}+\vec{q}}$ Here, PT should be used to determine the energy $E_{n \vec{k} \pm \vec{q}}$ from $E_{n^{\prime} \vec{k}}$ (for all n^{\prime}).
a) Use second order perturbation theory to show that

$$
E_{n \vec{k}+\vec{q}}-2 E_{n \vec{k}}+E_{n \vec{k}-\vec{q}}=\lambda\left(1-\sum_{n^{\prime} \neq n} F_{n, n^{\prime}}(\vec{k})\right)
$$

with the oscillator strength

$$
F_{n, n^{\prime}}(\vec{k})=\frac{2}{m} \frac{\left.\left|\vec{e}_{q} \cdot\left\langle u_{n \vec{k}}\right| \hat{\vec{p}}\right| u_{n^{\prime} \vec{k}}\right\rangle\left.\right|^{2}}{E_{n^{\prime} \vec{k}}-E_{n \vec{k}}} .
$$

Determine λ.
Hint: Use \hat{U} from problem 8 with \vec{q} and $-\vec{q}$ as perturbation to calculate $E_{n \vec{k}+\vec{q}}$ and $E_{n \vec{k}-\vec{q}}$, respectively.
b) The intraband part of the dielectric function is given by

$$
\varepsilon(\vec{q}, \omega)=1-\sum_{n \vec{k}} f\left(E_{n \vec{k}}\right) \frac{E_{n \vec{k}+\vec{q}}-2 E_{n \vec{k}}+E_{n, \vec{k}-\vec{q}}}{\left(E_{n \vec{k}}-E_{n \vec{k}+\vec{q}}+\hbar(\omega+i \eta)\right)\left(E_{n \vec{k}-\vec{q}}-E_{n \vec{k}}+\hbar(\omega+i \eta)\right)} \cdot \frac{e^{2} \cdot 2}{\varepsilon_{0} \Omega q^{2}} .
$$

Use your result from a) together with the result from the lecture for $\varepsilon(\vec{q}, \omega)$ to prove the F-sum rule in the limit $\vec{q} \rightarrow 0$

$$
\sum_{n^{\prime} \neq n} F_{n, n^{\prime}}(\vec{k})=1-m \vec{e}_{\vec{q}} \cdot \overline{\bar{M}}^{-1}(n \vec{k}) \cdot \vec{e}_{\vec{q}}
$$

Here, m is the electron mass and $\overline{\bar{M}}^{-1}(n \vec{k})$ is the tensor of the inverse effective mass (see lecture).

Problem 12: Hole operator
In the discussion of excited states in a semiconductor, it is useful to introduce special creation and annihilation operators $\hat{d}_{v}^{\dagger}, \hat{d}_{v}$ for valence band electrons. These operators describe so-called holes. Starting from electron creation and annihilation operators $\hat{c}_{v}^{\dagger}, \hat{c}_{v}$, they are defined by

$$
\hat{d}_{v}^{\dagger}=\hat{c}_{v} \quad \text { and } \quad \hat{d}_{v}=\hat{c}_{v}^{\dagger} \quad \text { for } \quad v=n, \vec{k} \quad \text { with } \quad n \in \text { valence band . }
$$

a) Calculate the following anticommutator relations
i) $\left[\hat{d}_{v}, \hat{d}_{v^{\prime}}\right]_{+}$,
ii) $\left[\hat{d}_{v}, \hat{d}_{v^{\prime}}^{\dagger}\right]_{+}$,
iii) $\left[\hat{c}_{l}, \hat{d}_{v}\right]_{+}$,
iv) $\quad\left[\hat{c}_{l}, \hat{d}_{v}^{\dagger}\right]_{+}$.
b) Consider a system in the ground state which is given in the Hartree-Fock approximation by

$$
\left|\phi_{0}\right\rangle=\prod_{j} \hat{c}_{j}^{\dagger}|0\rangle \quad \text { for all } \quad j \in \text { valence bands } .
$$

Calculate the expectation value for the number operator of a hole $\hat{N}^{\text {hole }}=\sum_{v} \hat{d}_{v}^{\dagger} \hat{d}_{v}$ for a state

$$
\left|\phi_{1}\right\rangle=\tilde{d}_{v^{\prime}}^{\dagger} \hat{c}_{l}^{\dagger} \hat{d}_{v^{\prime \prime}}^{\dagger}\left|\phi_{0}\right\rangle .
$$

c) Consider excited states of the form $\left|\phi_{1}\right\rangle=\hat{c}_{l}^{\dagger} \hat{d}_{v}^{\dagger}\left|\phi_{0}\right\rangle$. Here, one electron from conduction band l and one hole from valence band v have been created. Determine the following matrix elements
i) $\left\langle\phi_{0}\right| \hat{d}_{v^{\prime}} \hat{c}_{l^{\prime}} \quad \hat{c}_{l_{1}}^{\dagger} \hat{c}_{l_{2}} \quad \hat{c}_{l}^{\dagger} \hat{d}_{v}^{\dagger}\left|\phi_{0}\right\rangle$,
ii) $\left\langle\phi_{0}\right| \hat{d}_{v^{\prime}} \hat{c}_{l^{\prime}} \quad \hat{d}_{v_{1}}^{\dagger} \hat{d}_{v_{2}} \quad \hat{c}_{l}^{\dagger} \hat{d}_{v}^{\dagger}\left|\phi_{0}\right\rangle$,
iii) $\left\langle\phi_{0}\right| \hat{d}_{v^{\prime}} \hat{c}_{l^{\prime}} \quad \hat{c}_{l_{1}}^{\dagger} \hat{c}_{l_{2}} \hat{d}_{v_{1}}^{\dagger} \hat{d}_{v_{2}} \quad \hat{c}_{l}^{\dagger} \hat{d}_{v}^{\dagger}\left|\phi_{0}\right\rangle$.

Problem 13: Bogoliubov transformation

The Hamilton operator of two interacting electrons has the form

$$
\hat{H}=A\left(\hat{c}_{1}^{\dagger} \hat{c}_{1}+\hat{c}_{2}^{\dagger} \hat{c}_{2}\right)-B\left(\hat{c}_{1}^{\dagger} \hat{c}_{2}^{\dagger}+\hat{c}_{2} \hat{c}_{1}\right)
$$

with the constants $A, B>0$. Using the new operators $\hat{\alpha}, \hat{\beta}, \hat{\alpha}^{\dagger}$ and $\hat{\beta}^{\dagger}$ with

$$
\hat{c}_{1}=u \hat{\alpha}+v \hat{\beta}^{\dagger}, \quad \hat{c}_{1}^{\dagger}=u \hat{\alpha}^{\dagger}+v \hat{\beta}, \quad \hat{c}_{2}=u \hat{\beta}-v \hat{\alpha}^{\dagger}, \quad \hat{c}_{2}^{\dagger}=u \hat{\beta}^{\dagger}-v \hat{\alpha},
$$

\hat{H} can be transformed into diagonal form. Here, u and v are real constants.
a) Calculate the anticommutators

$$
\left[\hat{\alpha}, \hat{\alpha}^{\dagger}\right]_{+}, \quad\left[\hat{\alpha}, \hat{\beta}^{\dagger}\right]_{+} \quad \text { and } \quad\left[\hat{\beta}, \hat{\beta}^{\dagger}\right]_{+}
$$

for the case $u^{2}+v^{2}=1$.
b) Use the transformation given above to show that \hat{H} can be put into the form

$$
\hat{H}=F\left(\hat{\alpha}^{\dagger} \hat{\alpha}+\hat{\beta}^{\dagger} \hat{\beta}\right)+G
$$

if u and v are chosen in an appropriate way (under the requirement $u^{2}+v^{2}=1$). Here, F and G are constants.
c) Determine the ground state energy of the system.

