Problem 17:
 Polaron

An electron interacts with optical phonons in an ionic crystal. The interaction part of the Hamilton operator is given by

$$
\begin{gathered}
\hat{H}_{1}=\frac{1}{2} \sum_{\vec{k} \sigma} \sum_{\vec{q} \vec{q}^{\prime}}\left(\left(A(\vec{k}, \vec{q})\left(\hat{a}_{\vec{q}} \hat{a}_{\vec{q}^{\prime}}+\hat{a}_{\vec{q}} \hat{a}_{-\vec{q}^{\prime}}^{\dagger}\right)+B(\vec{k}, \vec{q})\left(\hat{a}_{-\vec{q}}^{\dagger} \hat{a}_{\vec{q}}+\hat{a}_{-\vec{q}}^{\dagger} \hat{a}_{-\vec{q}^{\prime}}^{\dagger}\right) \times\right.\right. \\
\left.\times W(\vec{q}) W\left(\vec{q}^{\prime}\right)\left(\hat{c}_{\vec{k}+\vec{q}+\vec{q}^{\prime} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}-\hat{c}_{\vec{k}+\vec{q} \sigma}^{\dagger} \hat{c}_{\vec{k}-\vec{q}^{\prime} \sigma}\right)+\delta_{\vec{q}, \vec{q}^{\prime}}|W(\vec{q})|^{2}(B(\vec{k}, \vec{q})-A(\vec{k}, \vec{q})) \hat{c}_{\vec{k} \sigma}^{\dagger} \hat{c}_{\vec{k} \sigma}\right) .
\end{gathered}
$$

Here,

$$
A(\vec{k}, \vec{q})=\frac{-1}{\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}-\hbar \omega_{\mathrm{LO}}} \quad \text { and } \quad B(\vec{k}, \vec{q})=\frac{-1}{\varepsilon_{\vec{k}+\vec{q}}-\varepsilon_{\vec{k}}+\hbar \omega_{\mathrm{LO}}} \quad \text { with } \quad \varepsilon_{\vec{k}}=\frac{\hbar^{2} k^{2}}{2 m} .
$$

The interaction matrix element has the property

$$
W(-\vec{q})=W(\vec{q})^{*} \quad \text { with } \quad|W(\vec{q})|=\frac{\gamma}{q} .
$$

γ is a real constant and $\hbar \omega_{\mathrm{LO}}$ is the energy of the longitudinal optical phonons.
a) Calculate the contribution E_{1} of \hat{H}_{1} in first order perturbation theory. Consider a product state $|\Psi\rangle=|\Phi\rangle_{\mathrm{el}}|\chi\rangle_{\mathrm{ph}}$ which contains one electron with wave vector \vec{k} and no phonons.

$$
|\Phi\rangle_{\mathrm{el}}=\hat{c}_{\vec{k} \sigma}^{\dagger}|0\rangle_{\mathrm{el}} \quad \text { and } \quad|\Phi\rangle_{\mathrm{ph}}=\left|n_{\vec{q}}=0\right\rangle_{\mathrm{ph}} .
$$

Show that the energy can be written in the following form

$$
E_{1}=\sum_{\vec{q}} \frac{|W(\vec{q})|^{2}}{\varepsilon_{\vec{k}}-\varepsilon_{\vec{k}+\vec{q}}-\hbar \omega_{\mathrm{LO}}}
$$

b) Evaluate the remaining sum over \vec{q} by integration over the whole \vec{q} space.
c) Use a Taylor series expansion of E_{1} to analyse your result in the limit of small wave vectors \vec{k}. Consider the quadratic term and determine the change of the electron's effective mass due to electron-phonon interaction.

Usefull integral: $\quad \int_{0}^{\infty} \frac{1}{x} \ln \left|\frac{a^{2}+2 b x+x^{2}}{a^{2}-2 b x+x^{2}}\right| d x=2 \pi \arcsin \frac{b}{a}$.

Problem 18: Superconducting bar

The current density \vec{j} of superconducting electrons is related by

$$
\vec{j}=-\frac{n_{s} \mathrm{e}^{2}}{m} \vec{A}(\vec{r})
$$

to the vector potential $\vec{A}(\vec{r})$. Here, n_{s} is the particle density of the superconducting electrons.
a) Use the Maxwell equations for the static case to show that the magnetic field in a superconductor is described by the Helmholtz equation

$$
\Delta \vec{B}(\vec{r})=\mu_{0} \frac{n_{s} \mathrm{e}^{2}}{m} \vec{B}(\vec{r})
$$

b) Solve the Helmholtz equation for a superconducting bar (with the width $2 a$) which is in a magnetic field. Assume that a homogeneous magnetic field $\vec{B}_{0}=\left(0,0, B_{0}\right)$ in z direction exists outside of the bar. Neglect the y and z dependence of the field inside the bar and consider the case $\vec{B}=\vec{B}(x)$ with $\vec{B}(-\vec{a})=\vec{B}_{0}=\vec{B}(a)$. Plot the resulting magnetic field $\vec{B}(x)$.
c) Calculate the y component of the current density and plot your result.

Problem 19: \quad BCS ground state
The BCS ground state has the form

$$
\left|\Psi_{\mathrm{BCS}}\right\rangle=\prod_{\vec{k}}\left(u_{\vec{k}}+v_{\vec{k}} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}\right)|0\rangle
$$

with

$$
u_{\vec{k}}=\frac{1}{2}\left(1+\frac{\varepsilon_{\vec{k}}}{\sqrt{\varepsilon_{k}^{2}+\Delta_{\vec{k}}^{2}}}\right), \quad u_{\vec{k}}^{2}+v_{\vec{k}}^{2}=1, \quad \Delta_{k}=\Delta \quad \text { for } \quad\left|\varepsilon_{\vec{k}}\right| \leq \hbar \omega_{\mathrm{LO}}
$$

and $\Delta_{\vec{k}}=0$ else.
a) Calculate the expectation values $\left\langle\hat{n}_{\vec{k} \uparrow}\right\rangle$ and $\left\langle\hat{n}_{-\vec{k} \downarrow}\right\rangle$ of the occupation number operators $\hat{n}_{\vec{k} \uparrow}=\hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{\vec{k} \uparrow}$ and $\hat{n}_{-\vec{k} \downarrow}=\hat{c}_{-\vec{k} \downarrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}$, respectively. Plot your result as a function of $\varepsilon_{\vec{k}}$ for i) $\Delta=0$ and ii) $\Delta \neq 0$.
b) In this part, the action of creation and annihilation operators $\hat{\alpha}_{\vec{k}}^{\dagger}, \hat{\beta}_{\vec{k}}^{\dagger}, \vec{\alpha}_{\vec{k}}, \beta_{\vec{k}}$ resulting from the Bogoliubov transformation should be investigated.
i) Calculate $\hat{\alpha}_{\vec{k}}\left|\Psi_{\mathrm{BCS}}\right\rangle$ and discuss your result.
ii) Proof that $\hat{a}_{\vec{k}^{\prime}}^{\dagger}\left|\Psi_{\mathrm{BCS}}\right\rangle=\hat{c}_{\vec{k}^{\prime} \uparrow}^{\dagger}\left|\tilde{\Psi}_{\vec{k}^{\prime}}\right\rangle$ with $\left|\tilde{\Psi}_{\vec{k}^{\prime}}\right\rangle=\prod_{\vec{k} \neq \vec{k}^{\prime}}\left(u_{\vec{k}}+v_{k} \hat{c}_{\vec{k} \uparrow}^{\dagger} \hat{c}_{-\vec{k} \downarrow}^{\dagger}\right)|0\rangle$.
iii) Calculate $\hat{\beta}_{\vec{k}^{\prime}}^{\dagger} \hat{\alpha}_{k^{\prime}}^{\dagger}\left|\Psi_{\mathrm{BCS}}\right\rangle$. Express your result in terms of $\left|\tilde{\Psi}_{\vec{k}^{\prime}}\right\rangle$.
c) Show that the particle number operator $\hat{N}_{k}=\hat{n}_{\vec{k} \uparrow}+\hat{n}_{-\vec{k} \downarrow}$ can be written as

$$
\hat{N}_{\vec{k}}=2 v_{\vec{k}}^{2}+\left(u_{k}^{2}-v_{\vec{k}}^{2}\right)\left(\hat{\alpha}_{\vec{k}}^{\dagger} \hat{\alpha}_{\vec{k}}+\hat{\beta}_{\vec{k}}^{\dagger} \hat{\beta}_{\vec{k}}\right)+2 u_{\vec{k}} v_{\vec{k}}\left(\hat{\alpha}_{\vec{k}}^{\dagger} \hat{\beta}_{\vec{k}}^{\dagger}+\hat{\beta}_{\vec{k}} \hat{\alpha}_{\vec{k}}\right) .
$$

Calculate

$$
\left\langle\hat{N}_{\vec{k}}\right\rangle=\left\langle\Psi_{\mathrm{BCS}}\right| \hat{N}_{\vec{k}}\left|\Psi_{\mathrm{BCS}}\right\rangle, \quad\left\langle\hat{N}_{\vec{k}}^{2}\right\rangle=\left\langle\Psi_{\mathrm{BCS}}\right| \hat{N}_{\vec{k}} \hat{N}_{\vec{k}}\left|\Psi_{\mathrm{BCS}}\right\rangle
$$

and $\left(\Delta N_{\vec{k}}\right)^{2}=\left\langle\hat{N}_{\vec{k}}^{2}\right\rangle-\left\langle\hat{N}_{\vec{k}}\right\rangle^{2}$. Express your result in terms of $\varepsilon_{\vec{k}}$ and $\Delta_{\vec{k}}$. Discuss your result.

