Besprechung: 13./14.07.2015

Aufgabe 46 (mündlich): Spektralanalyse

(6 Punkte)

Im vorherigen Übungsblatt wurden die Feinstruktur- und Hyperfeinstrukturaufspaltungen des Balmer- α Übergangs 2s $^2S_{1/2} \rightarrow 3p$ $^2P_{3/2}$ berechnet. Es wurden spektrale Aufspaltungen von $\Delta\nu=4,5\,\mathrm{GHz}$ (Feinstruktur) und $\Delta\nu=193\,\mathrm{MHz}$ (Hyperfeinstruktur) gefunden.

- a) Wenn Sie nur die Feinstrukturkomponenten mit einem Gittermonochromator spektral auflösen wollen, wie viele Linien eines Gitters müssen beleuchtet sein, damit diese spektrale Auflösung erreicht werden kann?
 - Wenn Sie ein typisches Gitter mit einer Strichzahl von 1200 (1800) Linien/mm einsetzen, in welcher Gitterordnung müssen Sie mindestens arbeiten?
 - Welche Brennweite muss der Fokussierspiegel mindestens haben, damit ein beugungsbegrenztes Bild des Spaltes ($d = 10 \,\mu\text{m}$) auf dem Gitter erzeugt wird?
 - Handelsübliche Spektrometer sind typischerweise mit $0,5\,\mathrm{m}$ und mit $1\,\mathrm{m}$ Brennweite erhältlich. Welchen Einfluß hat das auf die Auswahl des Gitters und die Beugungsordnung, mit der Sie arbeiten können?
- b) Wenn Sie ein Fabry-Perot Interferometer mit einem Plattenabstand von $d=1\,\mathrm{cm}$ und einem Reflexionsvermögen der Spiegel von R=98% einsetzen, lässt sich dann auch die Hyperfeinfeinstruktur der Zeeman-Linien auflösen?
 - Wie kann man die Zentralwellenlänge des Fabry-Perot-Interferometers über die Hyperfeinstruktur verstimmen, um ein Spektrum aufzunehmen?