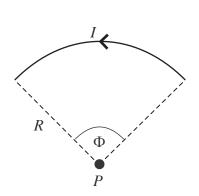

Aufgabe 33: Magnetfeld einer stromführenden Fläche

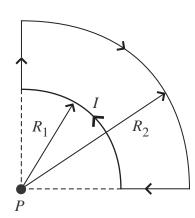
(mündlich, 6 Punkte)

In der x-y-Ebene liege eine unendlich ausgedehnte, flache Metallplatte, durch die Strom mit homogener Stromdichte in x-Richtung fließe. Der Strom pro Länge in y-Richtung sei λ .

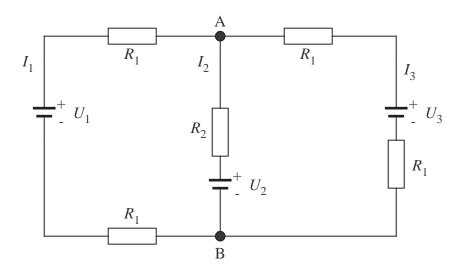
- a) [2 Punkte] Welche Richtung hat das resultierende Magnetfeld in den Punkten P und P'? Begründen Sie Ihre Antwort!
- b) [4 Punkte] Benutzen Sie die Maxwell-Gleichungen und den Stokes'schen Satz, um die Stärke des Magnetfeldes in den Punkten P und P' zu bestimmen.

Aufgabe 34: Magnetische Felder einer Schleife

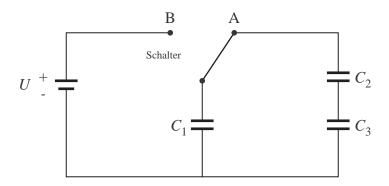

(schriftlich, 7 Punkte)


a) [4 Punkte] Benutzen Sie das Biot-Savart-Gesetz

$$\vec{B}(\vec{r}) = \frac{\mu_0 I}{4 \pi} \int \frac{d \vec{r}' \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} ,$$


um das magnetische Feld im Mittelpunkt P des abgebildeten Kreisbogens zu bestimmen. Der Bogen hat einen Öffnungswinkel Φ und einen Radius R. Er wird von einem Strom I durchflossen.

b) [3 Punkte] Bestimmen Sie das magnetische Feld im Punkt P einer Schleife (siehe Abbildung), die vom Strom I durchflossen wird. Benutzen Sie dabei die Ergebnisse aus a).



a) [3 Punkte] Gegeben sei ein Stromkreis, der drei Spannungsquellen $(U_1 = 2 \text{ V}, U_2 = U_3 = 4 \text{ V})$ und fünf Widerstände $(R_1 = 1 \Omega, R_2 = 2 \Omega)$ enthält. Berechnen Sie die Ströme I_1, I_2 und I_3 . Welche Richtung haben die Ströme? Wie groß ist die Potentialdifferenz zwischen den Punkten A und B in der Schaltung?

b) [3 Punkte] Ein Stromkreis (siehe Abbildung) besteht aus einer Spannungsquelle mit U = 12 V und drei zunächst ungeladenen Kondensatoren mit Kapazitäten $C_1 = 4$ μ F, $C_2 = 6$ μ F und $C_3 = 3$ μ F. Der Schalter befinde sich in der Position A. Der Schalter wird dann in die Position B umgelegt. Nachdem sich Kondensator C_1 vollständig aufgeladen hat, wird der Schalter wieder in Position A gebracht. Welche Ladungen stellen sich schließlich auf den Kondensatoren C_1 , C_2 und C_3 ein?

