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Abstract

The composite nature of hadrons implies that more than two partons can be involved in several

hard, semi-hard or soft interactions in one hadron-hadron collisions. Such processes are known

as multiple parton interaction (MPI) processes. The double parton scattering (DPS) is a process

involving two hard interactions per one hadron-hadron collision which provides a cleanest MPI

system. Moreover, the DPS is the most often occurring type of MPI at high transverse momenta of

the observed final state. The DPS, among others, constitutes an important background to many

Standard Model, as well as Beyond the Standard Model processes. In particular, DPS plays a

crucial role for the specific kinematic regions of multi-jet pair production. Theoretical studies of

DPS phenomena indicate a fundamental connection between DPS and various partonic correlations.

Experimental measurements of DPS performed at the Tevatron and the LHC suggest a presence of

non-trivial correlations between proton’s constituents. However, the nature of these correlations

needs to be better understood. Therefore, studies of the DPS phenomena can provide valuable

insights into proton’s structure and dynamics of its constituents.

In the main part of this thesis we discuss the phenomenology of the four-jet DPS production

in proton-proton (pp) and proton-nucleus (pA) collisions. We present simulations of the four-jet

DPS signal performed with our standalone DPS Monte Carlo code. We provide a detailed study of

the DPS and the single parton scattering (SPS) contributions to the the four-jet production in pp

collisions. In particular, we study the relative importance of both contributions for different jet cuts

and collision energies. We show how one can combine DPS events generated with our DPS code at

the partonic level and the initial and final state radiation (ISR and FSR) simulations implemented in

the Pythia event generator. We present necessary checks of an interface between our DPS code and

the Pythia event generator and study the impact of the ISR and FSR effects on our four-jet DPS

simulations. Our DPS code allows to use different models of double parton distribution functions

(dPDFs). In particular, we study the impact of the Gaunt & Stirling dPDFs (GS09) on the four-jet

DPS production in pp collisions and identify the regions of the final state phase space where GS09

effects become important. After discussing DPS in pp collisions we extend our DPS calculations

to pA collisions using the framework proposed by Strikman & Treleani. We study the interplay

between the DPS signal and the SPS background in pA collisions and estimate the overall impact of

the nuclear parton distribution functions (nPDFs) on the four-jet DPS productions in pA collisions.

In the remaining part of this thesis we provide a detailed comparison between the formalism

we have used to describe DPS in pp and pA collisions against models used in the Pythia event

generator. First, we study in detail similarities and differences between the GS09 approach and

modelling of dPDFs in Pythia and the role of momentum and number correlations induced by

dPDFs sum rules proposed by Gaunt & Stirling. Furthermore, we study the role of momentum and

number correlations induced by GS sum rules in the phenomenology of the four-jet DPS production.

Secondly, we provide a detailed comparison between the predictions of Strikman & Treleani against

the predictions of the Angantyr model of pA collisions which was recently implemented into the

Pythia event generator.
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Zusammenfassung

Die zusammengesetzte Natur der Hadronen impliziert, dass mehr als zwei Partonen an mehreren

harten, halbharten oder weichen Wechselwirkungen in einer Hadron-Hadron-Kollision beteiligt sein

können. Solche Prozesse werden als Multiparton-Wechselwirkung oder MPI bezeichnet. Die Doppel-

partonstreuung (DPS) ist ein Prozess, die zwei harte Wechselwirkungen pro Hadron-Hadron-Kollision

umfaßt. Sie stellt eins der reinsten MPI-Systeme dar. Außerdem ist die DPS die am häufigsten

vorkommende MPI-Art bei hohen Transversalimpulsen des beobachteten Endzustands. Die DPS

bildet unter anderem einen wichtigen Hintergrund für viele Standardmodell- und Jenseits-des-

Standardmodell-Prozesse. Insbesondere spielt die DPS für die spezifischen kinematischen Bereiche

der multiplen Jet-Paar-Produktion eine entscheidende Rolle. Theoretische Untersuchungen von

DPS-Phänomenen weisen auf eine fundamentale Verbindung zwischen DPS und verschiedenen

partonischen Korrelationen hin. Experimentelle Messungen der DPS, die am Tevatron und am

LHC durchgeführt wurden, legen nahe, dass nichttriviale Korrelationen zwischen den Protonenbe-

standteilen bestehen. Die Art dieser Zusammenhänge muss jedoch noch besser verstanden werden.

Deshalb können Untersuchungen der DPS-Phänomene wertvolle Einblicke in die Struktur des

Protons und die Dynamik seiner Bestandteile geben.

Im Hauptteil dieser Dissertation wird die Phänomenologie der Produktion von vier Jets in

Proton-Proton- (pp-) und Proton-Kern- (pA-)Kollisionen diskutiert. Wir präsentieren Simulationen

des Vier-Jet-DPS-Signals, die mit unserem eigenständigen DPS-Monte-Carlo-Computerprogramm

durchgeführt wurden. Wir legen eine detaillierte Studie der Beiträge der DPS und der Einfach-

partonstreuung (SPS) für die Vier-Jet-Produktion in pp-Kollisionen vor. Insbesondere vergleichen

wir den Einfluss beider Beiträge in Abhängigkeit verschiedener Jetparametrisierungen und Kol-

lisionsenergien. Wir zeigen, wie man auf partonischem Niveau DPS-Ereignisse, die mit unserem

DPS-Program generiert wurden, mit dem Partonen-Schauer des Pythia-Ereignisgenerators kom-

binieren kann. Wir diskutieren Tests einer Schnittstelle zwischen unserem DPS-Programm und

dem Pythia-Ereignisgenerator und untersuchen die Auswirkungen der Partonen-Schauer-Effekte auf

unsere Simulationen der Vier-Jet-Produktion. Unser DPS-Programm ermöglicht die Verwendung

verschiedener Modelle von Doppelpartondichtefunktionen (dPDFs). Insbesondere untersuchen wir

den Einfluss der Gaunt & Stirling-dPDFs (GS09) auf die Vier-Jet-Produktion in pp-Kollisionen

und identifizieren diejenigen Bereiche des Endzustand-Phasenraums, in denen GS09-Effekte wichtig

werden. Nach Erörterung der DPS für pp-Kollisionen dehnen wir unsere DPS-Berechnungen auf

pA-Kollisionen unter Verwendung des von Strikman & Treleani vorgeschlagenen Modells aus. Wir

untersuchen das Zusammenspiel zwischen dem DPS-Signal und dem SPS-Hintergrund für pA-

Kollisionen und schätzen den Gesamteinfluss der Kernpartondichtefunktionen (nPDFs) auf die

Vier-Jet-Produktion bei pA-Kollisionen. Im verbleibenden Teil dieser Dissertation stellen wir einen

detaillierten Vergleich zwischen dem Formalismus, den wir zur Beschreibung der DPS in pp- und

pA-Kollisionen verwendet haben, und Modellen, die im Pythia-Ereignisgenerator verwendet werden,

an. Wir untersuchen erstens detailliert Ähnlichkeiten und Unterschiede zwischen dem GS09-Ansatz

und der Modellierung der dPDFs in Pythia. Außerdem untersuchen wir die Rolle derjenigen Impuls-

und Zahlenkorrelationen, die durch die von Gaunt & Stirling vorgeschlagenen dPDF-Summenregeln

induziert werden. Darüber hinaus untersuchen wir die Rolle derjenigen Impuls- und Zahlenko-

rrelationen, die durch GS-Summenregeln in der Phänomenologie der Vier-Jet-DPS-Produktion
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induziert werden. Zweitens bieten wir einen detaillierten Vergleich zwischen den Vorhersagen von

Strikman & Treleani und den Vorhersagen des Angantyr-Modells für pA-Kollisionen, das kürzlich

in den Pythia-Ereignisgenerator implementiert wurde.
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supervising me during the work on my Marie Sk lodowska-Curie project as well as for interesting and

productive discussions. I am also very grateful to Torbjörn Sjöstrand for introducing modifications
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Chapter 1

Introduction to QCD

In this chapter we shall review the main formulae and concepts of the quantum chromodinamics

(QCD) we need to describe double parton scattering. Since we are going to talk about well established

ideas we shall not give any proofs. The details can be found either in the existing textbooks, for

example [1] - [5], or in original publications.

1.1 The QCD Lagrangian

A concept of symmetry can be seen as a cornerstone of modern particle physics since the requirement

to have a theory being invariant under the action of a certain symmetry group automatically

constrains the number of possible terms in a Lagrangian. Moreover, due to the Noether’s theorem,

each continuous symmetry leads to a conserved current and a corresponding quantum charge.

Therefore, a commonly used approach is to request first a certain symmetry of a new theory and

then write down all possible invariant terms.

Let us illustrate this idea by demonstrating how the Lagrangian of quantum electrodynamics

(QED) can be constructed using the Lagrangian of a free Dirac field as a starting building block.

The Lagrangian for the free Dirac field is given by

Lfree = ψ̄
(
i/∂ −m

)
ψ, (1.1)

where /∂ ≡ γµ∂µ, ψ is a four-component Dirac spinor and ψ̄ ≡ ψ†γ0 is its Dirac conjugate. This

Lagrangian is invariant under so called global gauge transformations ψ (x)→ eieθψ (x), where θ is a

constant number and e is a coupling constant. However, if we promote θ to an arbitrary function of

a space-time (so called local gauge transformations), the Lagrangian will not be invariant any more.

One can restore the invariance by changing the four-derivative ∂µ to a new object called covariant

derivative Dµ = ∂µ + ieAµ, where an auxiliary field Aµ, also called a gauge field, transforms under

the local gauge transformation as Aµ → Aµ − 1
e∂µθ, and hence the new Lagrangian

Lint = ψ̄
(
i /D −m

)
ψ = ψ̄

(
i/∂ −m

)
ψ − eψ̄ /Aψ (1.2)

is invariant under the local gauge transformation ψ (x)→ eieθ(x)ψ (x).

Now, if we would like to identify the field Aµ with a physical field we also need to add to Eq. 1.2

1
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a term which will describe the propagation of the field Aµ in the absence of interactions. Therefore,

LQED = ψ̄
(
i /D −m

)
ψ − 1

4
FµνF

µν , (1.3)

where Fµν = ∂µAν − ∂νAµ is a gauge-invariant antisymmetric tensor of the second rank also called

electromagnetic tensor.

The considerations above show how the requirement to have a Lagrangian being invariant under

a certain set of transformations give rise to a new theory. Using a group theory language one can

say that the requirement of the invariance of the free Dirac Lagrangian Lfree is equivalent to the

requirement of the invariance of the Lfree under the action of the abelian U(1) symmetry group on

its fermionic fields. The local gauge transformation ψ (x)→ eieθ(x)ψ (x) therefore describes how the

Dirac field transforms under the action of the U(1) symmetry group. The U(1) symmetry group, in

turn, is a simplest member of an infinite family of non-abelian Lie groups SU(N)1. It is therefore

very tempting to try to construct Lagrangians being invariant under the action of another members

of SU(N) family, e.g SU(2) or SU(3), and to investigate the properties of outcoming theories. In

1954 Yang and Mills [6] built a gauge theory invariant under the SU(2) symmetry group and used

it to explain the isopin conservation in nucleon-nucleon interactions. This approach turned up to

be very fruitful for the description of fundamental interactions. In particular, in 1973 Fritzsch,

Gell-Mann and Leutwyler [7] proposed to describe strong interactions with the Yang-Mills theory

based upon SU(3) symmetry group. In the same year Politzer [20] and independently Gross and

Wilczek [21] published their groundbreaking papers where the asymptotic freedom was discovered.

Therefore, 1973 can be seen as a year when a modern theory of strong interactions was born. In

the rest of this section we will briefly sketch main concepts of this theory we will need later in this

thesis.

The transformation of a Dirac field ψ under the action of the SU(3) symmetry group can be

written as ψ(x) → eiα
ataψ(x) where ta are the generators of the SU(3) group (see Appendix A)

and a sum over all repeating indices is assumed. Replacing a partial derivative ∂µ in Eq. 1.1 by a

covariant derivative Dµ = ∂µ − igAaµta one can write

LQCD = ψ̄
(
i /D −m

)
ψ, (1.4)

and, therefore, the transformation law of the field Aaµ is now given by

Aaµ → Aaµ +
1

g
∂µα

a + fabcAbµα
c, (1.5)

where fabc are the SU(3) group structure constants. The last term in Eq. 1.5 was absent in the

case of QED and emerges due to the non-abelian nature of the SU(3) symmetry group.

The tensor F aµν also acquires the additional term proportional to the structure constants fabc:

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.6)

1In this thesis we give only a necessary minimum of SU(N) properties essential to perform LO QCD computations,
see Appendix A. A more detailed description can be found, for example, in [3], [5].
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and, finally, the QCD (Yang-Mills) Lagrangian is 2

LQCD = ψ̄
(
i /D −m

)
ψ − 1

4
F aµνF

aµν . (1.7)

The fermions and bosons described by the QCD Lagrangian are called quarks and gluons respectively.

The tensor F aµν in Eq. 1.7 being contracted with itself will give, among others, terms involving

products of three and four gauge fields Aaµ. Such terms give rise to new types of Feynman graphs

shown in Fig. 1.1 b) and c) which were absent in QED.

1.2 QCD Feynman rules

The quantization of non-abelian gauge theories is a highly non-trivial task which requires special

procedures. The first results for one-loop diagrams were obtained by Feynman in 1963 [8] and

De Witt in 1964 [9]. Three years later Faddeev and Popov proposed a general way to quantize

non-abelean gauge theories valid for all orders in perturbation theory [10]. This procedure adds

new unphysical anti-commuting scalar fields to the QCD Lagrangian called Faddeev-Popov ghosts.

The ghosts give rise to negative probabilities that compensate unphysical contributions from the

longitudinal parts of the gauge boson propagator and thus restore the unitarity and the gauge-

invariance3.

However, the necessity to use diagrams with Faddeev-Popov ghosts appears only in loop

computations and in the case of tree-level scattering processes one can evaluate matrix elements

without taking ghosts into account.4 In this thesis we construct DPS processes out of two 2→ 2

leading order (LO) QCD processes and therefore in this section we provide only QCD Feynman

rules necessary for such computations. Therefore, the QCD Lagrangian can be separated into two

parts: the first part contains an interaction term proportional to ψ̄ /Aataψ and gives rise to the graph

similar to the QED vertex which is shown in Fig. 1.1 a) and the second part contains new triple and

quartic terms which give rise to so called gluon self-interaction graphs shown in Fig. 1.1 b), c). In

addition to new vertices one also has to know Feynman rules for quark and gluon propagators. The

form of a gluon propagator depends on a gauge chosen to quantize QCD Lagrangian. In Fig. 1.2

we list quark and gluon propagators for commonly used covariant and axial gauges.

1.3 Asymptotic freedom of QCD

One of the most common application of the field theory is evaluation of amplitudes which correspond

to a probability of transition between two different states, say |km〉 and |pn〉 where {km} and {pn}
are two sets of four momenta with m and n elements correspondingly. The amplitude for the

transition between |km〉 and |pn〉 is given then by the eigenvalues of a certain operator Ŝ called

scattering matrix. Therefore, one has to evaluate the following quantity 〈km|Ŝ|pn〉 called also the

2Here we omitted a term proportional to F aµν F̃
aµν where F̃ aµν = εµνρδF aρδ/2. This term leads to a non-trivial

QCD vacuum structure and violation of CP symmetry which was not observed experimentally (so called strong CP
problem, see [12]).

3The De Witt-Faddeev-Popov method is based upon so called path integral formulation of gauge theories. Later
gauge theories were also quantized in the covariant operator formalism, see [11].

4This depends on the diagrammatic technique being used to evaluate diagrams with triple gluon vertex. See, for
example, Peskin and Schroeder [5] Chapter 17.2 and Problem 17.3.
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a, µ

a)
igγµta.

a, kµ

c, qρb, pν

b)

gfabc [gµν (k − p)ρ + gνρ (p− q)µ + gρµ (q − k)ν ] .

d, σc, ρ

b, µ b, ν

c)

−ig2fabef cde (gµρgνσ − gµσgνρ) +

−ig2facef bde (gµνgρσ − gµσgνρ) +

−ig2fadef bce (gµνgρσ − gµρgνσ) .

Figure 1.1: Basic QCD graphs and corresponding vertex factors. The triple gluon vertex factor
depends on four-momenta of gluons and therefore on the direction of the momenta flow. Here we
choose all four-momenta to be flowing towards to the center of the vertex.

a) i

/p−m+ iε
.

a, µ b, ν
b)

i

q2 + iε

[
−gµν + (1− λ)

qµqν
q2 + iε

]
δab (covariant gauge),

i

q2 + iε

[
−gµν +

nµqν + nνqµ
n · q − n2 qµqν

(n · q)2

]
δab (axial gauge).

Figure 1.2: Fermion and gluon propagators in QCD.

S-matrix element. It is remarkable that one can relate S-matrix elements with a Fourier transform

of quantities called n-point Green functions using so called LSZ5 reduction formula [13]:

〈k1 . . . km|Ŝ|p1 . . . pn〉 ⇐⇒ 〈Ω|T̂ {φ(x1) . . . φ(xn)φ(y1) . . . φ(yn)} |Ω〉, (1.8)

where sets of variables {xn} and {yn} are Fourier conjugates of four-momenta {pn} and {kn},
T̂ is a time-ordering operator, φ(x1) . . . φ(xn)φ(y1) . . . φ(yn) is a certain combination of the field

operators and |Ω〉 is a ground-state of the theory under consideration. There are different methods

to compute Green functions. One of the most commonly used approaches is the expansion of

〈Ω|T̂ {φ(x1) . . . φ(xn)φ(y1) . . . φ(yn)} |Ω〉 in perturbation series in powers of a coupling constant g.

This approach allows to get many important results, in particular it allows to derive equation which

governs the evolution of the QCD coupling constant which was verified experimentally, see Fig. 1.6.

The concept of the running coupling is related to the so called renormalization procedure which we

briefly describe below. As a starting point let us consider a toy φ3 model with the Lagrangian given

5After Lehmann, Symanzik and Zimmermann who derived it at the first time.
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+ +

g2 g4
+ + . . .

g4freeGreen function

Figure 1.3: Perturbation series for two-point correlations function for the φ3 model.

by

Lφ3 =
1

2
(∂µφ)2 − 1

2
m2φ2 − g

3!
φ3. (1.9)

In the φ3 theory one can write the two-point Green function 〈Ω|T̂ {φ(x)φ(y)} |Ω〉 in form of a series

with diagrammatic representation shown in Fig. 1.3. Careful examination of the diagrammatic

expansion allows to identify subseries of diagrams with similar structures as in Fig. 1.4. It was

shown by Dyson [14] that one can sum up such subseries in all orders of g2 in a way similar to the

summation of the geometric series. Therefore, for the subseries shown in Fig. 1.4 one has to evaluate

only a contribution of the order of g2 and then perform a summation of the whole subseries. This

summation, however, comes at cost. Namely, such summation procedure will lead to a redefinition

of parameters in a starting Lagrangian. For example, a sum of the series shown in Fig. 1.4 will

result in a correction to the pole of the propagator of the scalar field φ:

i

p2 −m2 + iε
−→ i

p2 −m2 + iε
×
∞∑
n=0

(
Σ(p)

p2 −m2 + iε

)n
=

i

p2 −m2 − Σ(p) + iε
, (1.10)

where Σ is a contribution of the term of the order of g2 in Fig. 1.4. We see that summation of the

subseries shown in Fig. 1.4 in all orders of perturbation theory “shifts” the pole in the propagator

of the scalar field φ from m2 to m2 + Σ(p) which can be seen as a redefinition of the “bare” mass

parameter m2. One can find similar series which being summed will lead to the redefinition of the

coupling constant g and of the normalization of the field operator φ. The redefinition of the mass,

coupling constant and normalization of the field operators is called renormalization procedure and it

can be performed in different ways. In practice one fixes the form of the redefined parameters by

imposing so called renormalization conditions. In the case of Σ(p) one can, for example, require

Σ(p)

∣∣∣∣
p2=−µ2

= 0, (1.11)

d

dp2
Σ(p)

∣∣∣∣
p2=−µ2

= 0, (1.12)

where µ is a certain parameter called renormalization scale. The arbitrary choice of the renormaliza-

tion scale, however, should not affect predictions of the theory. Solution to this problem brings us to

the concept of the running mass and the running coupling, where both parameters become functions

of the renormalization scale µ such that the variation of the Green function with respect to µ is

compensated by the variation of mass and coupling constants. Theories where such redefinition of

parameters is possible at all orders in the perturbation expansion are called renormalizable.

In 1970 Callan [15] and Symanzik [19] generalized the aforementioned ideas and derived a

differential equation which provides a connection between the renormalized n-point Green function
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+
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+

g6freeGreen function

+

g4
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Figure 1.4: Example of the Dyson series for the two-point correlations function for the φ3 model.

and the renormalization scale µ:[
µ
∂

∂µ
+ β(g)

∂

∂g
+ nγ(g)

]
〈Ω|T̂ {φ(x1) . . . φ(xn)φ(y1) . . . φ(yn)} |Ω〉 = 0, (1.13)

where β(g) and γ(g) are certain functions which compensate the changes in n-point Green function

due to the changes in the renormalization scale µ. For example, one can show that the β-function6

in Eq. 1.13 describes the speed of change of the coupling constant g with the renormalization

scale µ:

β(g) = µ
∂

∂µ
g. (1.14)

This equation is called renormalization group equation and its solution determines the dependence

of the coupling constant g on the renormalization scale µ.

We shall note here that so far we were not discussing the structure of terms in the perturbation

series shown in Fig. 1.3. However, the evaluation of the contribution of the order of g2 shown in

Fig. 1.4 gives an infinite value of Σ(p). The corresponding expression for Σ(p) is proportional to

the integral over the loop four-momentum q:

Σ(p2) ∼
∫

d4q

[(p+ q)2 −m2 + iε] [q2 −m2 + iε]
, (1.15)

where p and q are four-momenta assigned as in Fig. 1.5. Since the value of the four-momentum q is

not fixed by the energy-momentum conservation, the integration in Eq. 1.15 runs over the whole

four-volume d4q which at high values of q yields∫
d4q

[(p+ q)2 −m2 + iε] [q2 −m2 + iε]
≈
∫
d4q

q4
∼
∫
dq

q
, (1.16)

which is a logarithmically divergent quantity. The divergence in Eq. 1.16 can be regularized

in different ways. One can, for example, impose an upper integration limit Λ which makes the

integral over d4q convergent. Another commonly used method is so called dimensional regularization

[17]. According to this approach one makes the loop integrals as in Eq. 1.16 functions of the

dimensionality of the space-time d by changing the integration measure as d4q → ddq. For the

sufficiently small values of d the integral in Eq. 1.16 will become convergent which allows to evaluate

the loop integral in d-dimensions. After performing the integration in d-dimensions one restores the

correct dimensionality by taking the limit d→ 4. The final expression should have a well defined

limit as d→ 4.

6The modern name β-function was introduced in paper of Callan [15] and Symanzik [19]. However, the idea
of scaling behaviour was first developed in the earlier paper of Gell-Mann and Low [18] and in the PhD-thesis of
Petermann written under the supervision of Stueckelberg [16]. A pedagogical introduction to the Callan-Symanzik
equations and to the concept of running coupling can be found, for example, in [5].
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However, the regularization of the loop integrals introduces to a theory a new scale called

regularization scale. For example, if one regularizes the loop integrals by imposing an upper

integration limit then the new scale is given by the cutoff parameter Λ. In case if one uses

dimensional regularization the new scale is given by the parameter ε = 4− d which appears in the

final expressions after taking the limit d→ 4. Therefore, one could expect that β- and γ-functions in

the Callan-Symanzik equation would depend on the regularization scale. However, the remarkable

property of the renormalizable theories is that both functions appear to be independent on the

regularization scale in all orders of the perturbation theory. To prove this statement for each theory

is a non-trivial task. The representative selection of proofs is given in the monograph of Collins [4].

The concrete form of β- and γ-functions has to be found by solving Eq. 1.13 at the given order

in the perturbation theory. After computing the β-function one can substitute it into Eq. 1.14

and solve it for the coupling g which will give the evolution equation for the coupling constant as

a function of the renormalization scale µ. In QED at the one-loop accuracy level the solution of

Eq. 1.14 yields

g2(µ2) =
g2(µ2

QED)

1− g2(µ2
QED)

12π2 log
(
µ2/µ2

QED

) , (1.17)

which describes the evolution of g from the initial value of the renormalization scale µQED up to

the higher values of µ. We see that in QED the increase of µ leads to the increase of the g2. In case

of the QCD the behaviour of the coupling constant, however, changes. In early seventies of the past

century theoretical physicists started to understand that the theory of strong interactions, in order

to be able to explain experimental data available at that time, must have the coupling constant

which behaves inversely to the QED coupling. According to the monograph of Steven Weinberg [22],

Chapter 18.7, one of the first scientists who came up with this idea was Anthony Zee. However, he

did not publish this observation. In 1972 Gerardus ’t Hooft developed the background field method

and with its help demonstrated that in QCD β(g) < 0. In June 1972 at the conference on gauge

theories in Marceille ’t Hooft reported his results which, however, were not published, see [22],

Chapter 18.7. One year later Gross and Wilczek [21] and independently Politzer [20] demonstrated

that in the SU(N) non-abelian gauge theory at one-loop accuracy level

β(g) = − g3

(4π)2

(
11

3
CA −

4

3
NfTR

)
, (1.18)

where Nf is a number of fermion species, CA is the SU(N) group invariant and and TR fixes

normalization of the SU(N) generators, see Appendix A. In the case of the SU(3) symmetry group

this equation becomes

β(g) = − g3

(4π)2

(
11− 2

3
Nf

)
, (1.19)

which is always a negative quantity as long as Nf ≤ 16.

After evaluation of the β-function one can solve the equation for running coupling constant
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p p

p + q

q

Figure 1.5: One loop contribution to Σ(p) in the φ3 model. Arrows here represent “circulation” of
four-momenta inside the loop.

which at one-loop accuracy level yields

g2(µ2) =
g2(µ2

QCD)

1 +
g2(µ2

QCD)

(4π)2

(
11− 2

3nf
)

log(µ2/µ2
QCD)

, (1.20)

or

αs(µ
2) =

αs(µ
2
QCD)

1 +
αs(µ2

QCD)

12π (33− 2nf ) log(µ2/µ2
QCD)

, (1.21)

where αs = g2/4π. We see that as soon as nf ≤ 16 the coupling constant of QCD decreases with

the growing of the renormalization scale µ. This phenomenon is called asymptotic freedom and it is

confirmed by various experimental measurements, see Fig. 1.6. In this thesis we will concentrate

on the evaluation of the leading order (LO) DPS cross section and, therefore, through this thesis

we will use one-loop expression for the running αs given by Eq. 1.21. The details on higher order

computations of the β-function and on αs measurements can be found in [23], [24].

1.4 Factorization theorem and parton model

We have now constructed the QCD Lagrangian using formal considerations which were quite far

away from the application to experimental results. In this section we shall briefly discuss two

key ingredients, namely parton model and factorization theorem, that make a comparison between

predictions of QCD and experimental data possible.

Let us start with a brief historical introduction to the parton model. According to its main

assumption, a proton is a composite particle which consist of many point-like particles called partons.

A strong indication that protons are of composite nature can be obtained from a comparison between

proton and electron magnetic moments. If proton was an elementary particle its magnetic moment

would be the same as the magnetic moment of an electron which is not the case7. In early sixties

Gell-Mann [30] and Zweig [31] postulated proton to be a bound state of three new particles with

7The g-factor of a proton is gp ≈ 5.96 which is almost three times bigger than the g-factor of an electron. For the
first measurements of the proton g-factor see [25], for the recent measurements see [26].
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Figure 1.6: The combined measurements of αs as a function of the renormalization scale µ ≡ Q,
from [23].

fractional electric charge called quarks. Later, to avoid spin-statistic violation, a new quantum

number called colour was proposed by Greenberg [32] and by Han and Nambu [33] 8. Assuming

electrons being point-like particles, one could try to test the composite nature of proton studying

the electron-proton collisions. In 1966 Bjorken [36] demonstrated that electron-proton cross sections

for composite and point-like protons are of comparable size and, therefore, the composite nature

of proton could be tested at the Stanford Linear Accelerator Center (SLAC-MIT experiment). A

few years later first pioneering experimental studies took place [45] - [49]. We will not discuss the

details of these measurements which can be found in the original publications and, for example, in

the reviews [29] and [38]. Instead we briefly sketch main results and their role for the verification of

the parton model.

As a starting point let us consider a process in which an electron scatters on a proton elastically:

e(k1) + p(k2)→ e′(k′1) + p(k′2), (1.22)

where k1, k2 (k′1, k′2) are four-momenta of the electron and proton before (after) the scattering. In

the case of the point-like particles the cross section for this process is given by the well known Mott

formula corrected for the scattering of two spin 1/2 particles9:

dσelasticpoint−like
dΩ

=

(
dσ

dΩ

)
Mott

[
1− q2

2M
tan2

(
θ

2

)]
, (1.23)

8In parallel to the research done in the cited papers, many interesting results, e. g. existence of the colour charge,
were obtained independently by Struminsky and by Bogoliubov, Struminsky and Tavkhelidze [35]. Unfortunately,
these results were never published in regular journals and exist only in form of preprints. The translation of the paper
of Struminsky is given in [34].

9The details can be found, for example, in [42], [43].



10 CHAPTER 1. INTRODUCTION TO QCD

where M is a proton mass, qµ is a four-momentum transferred qµ = (k′1 − k1)µ = (k′2 − k2)µ and θ

is a scattering angle. In 1950 this formula was generalized by Rosenbluth [39] for the case of the

non-point-like proton

dσelastic

dΩ
=

(
dσ

dΩ

)
Mott

[
F2

1 (Q2)− κQ2

4M2
F2

2 (Q2)− Q2

2M2

(
F1(Q2) + κF2(Q2)

)2
tan2

(
θ

2

)]
, (1.24)

where κ is a parameter which describes the deviation of the proton g-factor from the g-factor of

an electron gp = 2(1 + κ) ≈ 5.96 and q2 = −Q2 < 0 is a virtuality of a photon being exchanged

between the electron and the proton in the scattering process. The form-factors F1 and F2 are

functions of only the absolute value of the four-momentum transferred between the electron and the

proton. The linear combinations of F1 and F2 gives the spatial distribution of charge GE(Q2) and

magnetic moment GM (Q2) of the proton in the momentum space:

GE(Q2) = F1(Q2) +
κQ2

4M2
F2(Q2), (1.25)

GM (Q2) = F1(Q2) + κF2(Q2), (1.26)

also called Sachs form-factors. By measuring dσelastic/dΩ one can extract the form-factors F1 and

F2 out of the data, as it was first done by Hofstadter et al. [40], [41].

The approach of Rosenbluth turned out to work well at the low scattering energies. However,

the growth of the momentum transferred in the elastic scattering process will lead to a decrease of

the de Broglie wave-length of a photon exchanged between the electron and the proton. Following

the analogy between the wave optics and the quantum mechanics, one could expect that a photon

with a short de Broglie wave-length would resolve proton constituents if there are any. Therefore, it

is natural to expect that at high value of the four-momentum transferred the electron in Eq. 1.22

will stop to interact with a whole proton but instead will interact with one of its constituents.

Moreover, one would expect that the interaction of a such type will lead to the destruction of a

proton. Schematically it can be written as

e(k1) + p(k2)→ e′(k′1) +X(k′2), (1.27)

where X stands for all possible unobserved final states as it shown in Fig. 1.7. Such scattering

process is called deep inelastic scattering (DIS) and its differential cross section is described by so

called hadronic tensor 10:

Wµν = −
(
gµν −

qµqν
q2

)
W1

(
Q2, ν

)
+

1

M2

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
W2

(
Q2, ν

)
, (1.28)

where pµ is a four-momentum of the proton, M is a proton mass, ν = E − E′ is the difference

between energies of outgoing and incoming electrons and qµ is the four momentum of the virtual

photon. These parameters are connected through Mν = p · q.
With the help of the hadronic tensor one can express the differential cross section for the process

10This parametrization of the hadronic tensor does not account for the spin of the target in DIS processes. For the
parametrization of the hardonic tensor for the case of spin 1/2 targets see [44].
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Figure 1.7: A schematic picture of electron-proton scattering studied in the SLAC-MIT experiment.

e+ p→ e′ +X in the rest frame of a proton as

dσDIS

dΩ
=

(
dσ

dΩ

)
Mott

[
W2(Q2, ν) + 2W1(Q2, ν) tan2(θ/2)

]
, (1.29)

see [36], [38]. The form-factors W1 and W2, also called structure functions, are of a non-perturbative

nature and thus have to be extracted out of the scattering data. Unlike the form-factors Fi(Q2)

in the Rosenbluth formula for the elastic cross section, the structure functions Wi depend on the

virtuality of the exchanged photon q2 and the change of its energy ν = E − E′. Therefore, one can

expect a strong difference in behaviour of the elastic and the DIS cross sections given by Eq. 1.24

and Eq. 1.29 correspondingly.

In 1969 first measurements of DIS processes were reported by the SLAC-MIT collaboration [45],

[46]. The measured DIS cross section as a function of Q2 is shown in Fig. 1.8. We see that the DIS

cross section measured for different values of the invariant mass of the proton decay products W

drastically differs from the elastic electron-proton cross section given by the Rosenbluth formula

Eq. 1.24. We also see that the DIS cross section dominates over the elastic cross section for values

of Q2 > 1 GeV and that the DIS cross section demonstrates a mild dependence on the value of the

invariant mass of the proton decay products. In the same year Bjorken analyzed the experimental

data and demonstrated that in the limit when Q2 → ∞ and ν → ∞ such that the ratio Q2/ν is

fixed the form-factors W1 and W2 are functions only of a single variable x = Q2/2Mν [37]:

lim
Q2→∞, ν→∞

MW1(Q2, ν) = F1(x),

lim
Q2→∞, ν→∞

νW2(Q2, ν) = F2(x), (1.30)

which was verified experimentally, see Fig. 1.9.

Moreover, in 1969 Callan and Gross [51] demonstrated that in the Bjorken limit F1(x) and F2(x)

are not independent and are related through

2xF1(x) = F2(x), (1.31)

which was also confirmed by the SLAC experiment, see Fig. 1.10. The Callan-Gross relation was

derived using so called current algebra methods, see [53]. Within this approach one can derive

Eq. 1.31 from the commutator of parton currents which depends on the spin of partons. The
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Figure 1.8: Deep inelastic scattering cross section measured by the SLAC-MIT collaboration for the
different values of the invariant mass of the proton decay products W = 2, 3 and 3.5 GeV. The data
is normalized to the Mott cross section, from [46].

Callan-Gross relation was derived assuming that partons have the spin equal to 1/2. Additionally,

it was demonstrated that for the partons with the spin equal to 0 or 1 in the Bjorken-limit xF1 = 0

[51]. Therefore, the experimental verification of the the Callan-Gross relation demonstrated that

proton consist of the partons with the spin 1/2 which was the first step towards to the discovery of

quarks and establishment of the modern theory of strong interactions.

Figure 1.9: a) The experimental test of Bjorken scaling, from [50]. b) νW2(q2, ν) as a function of q2

from W > 2 GeV at the fixed value of Bjoken variable Q2/2Mν = 4. The plot is taken from [49].
The data shown in the plot is from [45], [46], [47].

The parton model based upon results of Bjorken, Callan and Gross despite its success had a

significant disadvantage. Namely, this model did not account for the interaction between partons
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and, therefore, needed to be improved. In 1969 Adler and Tung [54] considered an improved parton

model consisting of an SU(3)-triplet of fermions and an SU(3)-singlet massive gauge boson. It was

shown that due to the interactions between partons in a such model the Bjorken limit does not

exist. In the same year Jackiw and Preparata [55], independently from Adler and Tung, obtained

similar results. However, the models of the interaction between partons considered in [54] and [55]

were not asymptotically free. In 1973 Gross and Wilczek [56] suggested that in the asymptotically

free theories the Bjorken scaling will hold up to the logarithmic corrections. The appearance of

the logarithmic corrections to the Bjorken scaling was demonstrated in the same year by Callan

and Gross [57]. The results obtained by Callan and Gross in [57] together with the discovery of the

asymptotic freedom of QCD [20], [21] allowed to build the so called QCD-improved parton model.

The detailed historical review of the foundation and verification of the QCD and the QCD-improved

parton model can be found in [58] - [60]. The detailed description of the state-of-the art of the

QCD and QCD-improved parton model is given in the monograph of Collins [1]. From now on

we will assume that interactions between partons are described by the QCD Lagrangian discussed

in Chapter 1.1. In the rest of this section we will describe how one can connect the scattering

amplitudes computed in perturbation theory in QCD with the experimental data by means of the

factorization theorem.

As we have discussed at the beginning of this section, the DIS cross section can be expressed

in terms of the structure functions W1 and W2 or, in the Bjorken limit, in terms of F1 and F2.

Therefore, in order to test the QCD-improved parton model one has to compute Wi or Fi in QCD.

However, the main obstacle here is that the structure functions W1 and W2, as well as F1 and F2,

are non-perturbative objects and, therefore, cannot be computed by means of the perturbation

theory. One could circumvent this issue by postulating that one can express the structure functions

Fi as convolutions of perturbative and non-perturbative pieces. For example,

F1(x) =
∑
a

1∫
x

dξ

ξ
fa/hA(ξ)H1a

(
x

ξ

)
, (1.32)

where the functions fa(ξ) are called parton distribution functions (PDFs) and the functions H1a are

called hard scattering coefficients. The product fa(ξ)dξ in Eq. 1.32 is a probability to find a parton

of a type a in a hadron of a type hA carrying a fraction ξ to ξ + dξ of the hadron’s longitudinal

momentum. The factorization of the structure function F1 as in Eq. 1.32 is equivalent to a separation

into a long-distance physics (non-perturbative piece described by PDFs) and short-distance physics

(perturbative piece described by the hard scattering coefficients). By writing F1 as in Eq. 1.32 we

also assume that the interaction between a virtual proton and a hadron occurs at the time-scales

short enough to consider all hadrons’ constituents have a definite momentum and that a virtual

photon interacts only with one parton during the DIS process. However, a detailed theoretical study

based upon field-theoretical definitions of the PDFs and hard scattering coefficients H1a tells us

that Eq. 1.32 is not correct and requires some important modifications, see [1], [61]. First of all, the

separation of the scattering process into the short- and long-distance pieces as in Eq. 1.32 leads to

UV-divergent parton densities which have to be regularized. As a consequence, both PDFs and

hard scattering coefficients H1a will depend on a new scale µF called factorization scale. Moreover,

the structure functions Fi and hard scattering coefficients H1a will also depend on another so
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called characteristic scale Q which leads to the violation of the Bjorken scaling which was observed

experimentally, see Fig. 1.11. Therefore, the correct factorization formulae for the DIS structure

functions Fi are

F1(x,Q2) =
∑
a

1∫
x

dξ

ξ
fa/hA(ξ, µF )H1a

(
x

ξ
,
Q

µF
,
Q

µR
, αs(µR)

)
+ (p.s.c), (1.33)

F2(x,Q2) =
∑
a

1∫
x

dξ

ξ
fa/hA(ξ, µF ) ξ H2a

(
x

ξ
,
Q

µF
,
Q

µR
, αs(µR)

)
+ (p.s.c), (1.34)

where Q2 is a characteristic scale of the DIS process and (p.s.c) is a term suppressed by the power

Q−2. The parameter µR is a renormalization scale of hard scattering coefficients H1a, H2a and

αs = g2/4π where g is a QCD coupling constant, see [1], [61].
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Figure 1.10: The experimental test of the Callan-Gross formula. Different colours correspond to the
different measurements. Here we plot the data from [52].

In general, similar statements are proved for some other types of scattering processes (e.g. Drell-

Yan process [69], for the proof see [70] - [72] and the review [61]), however, due to the complexity of a

problem, many scattering processes of experimental relevance still lack the proof of factorization. In

the case of the hadron-hadron scattering, the factorization theorem (omitting the power suppressed

terms) reads

σ =
∑
ij

∫
dx1 dx2 fi/ha(x1, µF ) fj/hb(x2, µF )Hij

(
x1, x2,

Q

µF
,
Q

µR
, αs(µR)

)
, (1.35)

where functions fi/ha(x1, µF ) and fj/hb(x2, µF ) are renormalized distribution functions of partons
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of type i and j in hadrons ha and hb correspondingly. The hard scattering coefficients Hij can be

expanded in terms of the coupling constant αs as

Hij

(
x1, x2,

Q

µF
,
Q

µR
, αs(µR)

)
= α2

s

n∑
m=0

αms (µR)hmij

(
x1, x2,

Q

µF
,
Q

µR

)
, (1.36)

which allows to write Eq. 1.35 as

σ =
∑
ij

∫
dx1 dx2 fi(x1, µF ) fj(x2, µF )×

× α2
s

n∑
m=0

αms (µR)hmij

(
x1, x2,

Q

µF
,
Q

µR

)
. (1.37)

Several important comments have to be made. First of all, the definition of the renormalized

PDFs fi/h(x, µF ) depends on a chosen renormalization scheme. Once the scheme is chosen, one

can use Eq. 1.33 and Eq. 1.34 to extract fi/h(x, µF ) out of the DIS data. One of the most

popular renormalization schemes is so called MS scheme [64]. The scale dependence of the PDFs

renormalized according to the MS scheme is governed by a system of the renormalization group

equations called Dokshitzer - Gribow - Lipatow - Altarelli - Parisi (DGLAP) equations [66], [67], [68].

In section 1.5 we will discuss it in more details. The factorization scale µF is an arbitrary parameter

which implies that the renormalized PDFs cannot be interpreted as probability distribution functions

any more. Instead, one can think about hard scattering coefficients and renormalized PDFs in Eq.

1.37 as about perturbative and non-perturbative counterparts of the same expression. Due to the

arbitrariness of the choice of µF , the cross section σ cannot depend on the variations of µF . It

implies that the variation of renormalized PDFs in Eq. 1.37 leads to a variation of the coefficients

hmij in the perturbation expansion of Hij such that the cross section σ does not depend on it11

∂σ

∂µF
= 0. (1.38)

In practice, however, one truncates the perturbative expansion in Eq. 1.37 at the certain order in

the power of αs. It means that the dependence on µF and µR of the cross section evaluated with

truncated series will not cancel out. The choice of both factorization and renormalization scales

becomes then important. Usually one sets µF = µR = Q where the value of Q is chosen such that

the cross section evaluated with truncated series provides the best agreement with the data and is

least sensitive to the scale variation.

The factorization theorem, as it is formulated for the DIS Eq. 1.33, Eq. 1.34 and hadron-hadron

scattering Eq. 1.35, together with the renormalized PDFs which obey DGLAP evolution equations

and hard scattering coefficients computed in QCD are the main components of the QCD-improved

parton model. In this thesis, in order to construct double parton scattering (DPS) processes, we will

use LO QCD 2→ 2 scattering processes of a type

p p→ j1 j2 + X, (1.39)

11The same statement is true for the variation with respect to the renormalization scale µR which implies ∂σ/∂µR = 0.
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where j = g, u, d, s, c, ū, d̄, s̄, c̄ and X stands for the other possible final states. In this case, the

factorization theorem can be written as

σ =
∑
ij

∫
dx1 dx2 fi(x1, µF ) fj(x2, µF )×

× α2
s

n∑
m=0

αms (µR)hmij

(
x1, x2,

Q

µF
,
Q

µR

)
≈

≈
∑
ij

∫
dx1 dx2 fi(x1, µF ) fj(x2, µF )×

× α2
s h

0
ij (x1, x2) . (1.40)

Note that the the first term in the expansion of the leading order hard scattering coefficient

depends only on renormalization scale µR and up to the factor α2
s coincide with the LO QCD cross

section. Therefore, we can write α2
s h

0
ij (x1, x2) = σLO

ij (x1, x2, αs(µR)). In our computations we set

µF = µR = Q which gives us the master expression for the leading order 2→ 2 cross section:

σ =
∑
ij

∫
dx1 dx2 fi(x1, Q) fj(x2, Q) σ̂LO

ij (x1, x2, αs(Q)) , (1.41)

which we will write in a more compact form as

σ =
∑
ij

∫
dx1 dx2 fi(x1, Q) fj(x2, Q) σ̂ij , (1.42)

where x1, x2 are Bjorken variables, fi(x1, Q) and fi(x1, Q) are renormalized parton distribution

functions at the factorization scale Q.

1.5 Evolution of parton distribution functions

In section 1.4 we have discussed the factorization theorem and mentioned that the renormalization

procedure introduces scale dependent parton distribution functions f(x, µF ). We also argued that

the renormalization scale µF may have an arbitrary value and that the dependence of f(x, µF )

on µF in the MS renormalization scheme is governed by renormalization group equations also

called DGLAP evolution equations. There exist several methods to derive the DGLAP equations.

Historically the DGLAP equations were derived by considering the emission of collinear particles by

proton’s constituents. Within this approach one postulates the “naive” factorization form as

F1(x) =
∑
a

1∫
x

dξ

ξ
fa/hA(ξ)σ̂1a

(
x

ξ

)
, (1.43)

where f(ξ) are so called “bare” parton distribution functions and σ̂1a is a non-regularized partonic

cross section12. If one will consider then an emission of collinear particles by proton’s constituent,

one will have to deal with IR-divergent partonic cross sections σ̂1a. One can regularize these

12We shall note here that in general hard scattering coefficients H1a, H1b and Hij as in Eq. 1.33, Eq. 1.34 and
Eq. 1.35 do not coincide with partonic cross sections, see, for example, Chapter 7 of [2].



1.5. EVOLUTION OF PARTON DISTRIBUTION FUNCTIONS 17

divergences by redefining “bare” parton distribution functions f(ξ) in a such way that the new

distributions f(ξ, µF ) “absorb” IR divergences due to the emission of collinear particles. The scale

dependence of the redefined parton distribution functions f(ξ, µF ) is described by the DGLAP

evolution equations. The factorization scale µF then can be seen as a scale which separates the

emission of the collinear particles (which are included into f(ξ, µF )) and hard particles which are

included into the parton cross section. This approach is also called IR point-of-view on the DGLAP

equations. Historically it is the way the DGLAP evolution equations were derived at the first time,

see [66], [67], [68]. This approach, though providing correct results, in general, is not correct. One

could, for example, consider a field theory where all partons are massive. In this case, according to

the IR point-of-view, one would not need then renormalized parton distribution functions f(ξ, µF )

which is not correct. Moreover, one can show that the “bare” PDFs defined as products of the field

operators “sandwiched” between two hadron states are UV- but not IR-divergent, see [1]. These

UV-divergences being renormalized according to the MS renormalization scheme give rise to the

same DGLAP evolution equation as in the IR approach.

In the rest of this section we will briefly sketch the derivation of the DGLAP equations according

to the IR point-of-view. We will follow the pedagogical explanation given in the book of Peskin

and Schroeder [5] which is based upon original publications by Dokshitzer [66], Gribov and Lipatov

[67] and by Altarelli and Parisi [68]. We also demonstrate how the appearance of the logarithms

due to the multiple emission of collinear particles leads to the violation of the Bjorken scaling we

mentioned in the previous section. The modern point of view on the DGLAP evolution equations

can be find in the monograph of Collins [1]. The connection between the IR and UV approaches to

the PDFs is given by the methods described in the monograph of Smirnov [62].

Before discussing the DGLAP evolution equations for QCD, let us consider the processes of

emission of collinear particles in QED. Our starting point is to consider a process of an electron

splitting as it is schematically shown in Fig. 1.12. Since we are interested in emission of collinear

particles we will have to evaluate the matrix element for the process in Fig. 1.12 for the two different

kinematic configurations. Namely, we will have to consider situations when one of the final state

particles becomes collinear to the initial state electron. Let us consider first the situation when

emitted photon becomes collinear. In order to do that we parametrize the momenta of the initial

and final state particles as follows

pµ = (p, 0, 0, p) , (1.44)

qµ =

(
zp, p⊥, 0, zp−

p2
⊥

2zp

)
, (1.45)

kµ =

(
(1− z)p,−p⊥, 0, (1− z)p+

p2
⊥

2zp

)
, (1.46)

where z is the fraction of the energy of the initial electron that is carried by the photon. The

decomposition set by Eq. 1.45 - 1.46 implies

qµqµ = (zp)2 − p2
⊥ −

(
zp− p2

⊥
2zp

)2

= 0 +O(p2
⊥), (1.47)

kµkµ = (1− z)2 p2 − p2
⊥ −

(
(1− z)p+

p2
⊥

2zp

)2

= −p
2
⊥
z

+O(p4
⊥). (1.48)
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Figure 1.11: Measurements of the DIS at DESY. In order to ease reading of data each measurement
was shifted by c(x) = 0.6(ix − 0.4) where ix is the bin number starting at ix = 1 for x = 0.13,
from [63].

We see that according to Eq. 1.47 and Eq. 1.48 in the limit of small p⊥ the emitted photon becomes

collinear to the initial state electron and the emitted electron acquires the virtuality −p2
⊥/z. Similar

decomposition for the emission of a collinear electron gives

kµkµ = 0 +O(p2
⊥), (1.49)

qµqµ = − p2
⊥

(1− z) +O(p4
⊥). (1.50)

X

Z

p

q

k

Figure 1.12: Schematic picture of an electron splitting into electron-photon pair.

Using Eq. 1.44 - 1.50 one can evaluate the cross section for the scattering processes with emission

of one collinear particle shown in Fig. 1.13. Consider first the scattering process in Fig. 1.13 a).

The diagram in Fig. 1.13 a) corresponds to the scattering process where the initial state electron

splits into a collinear electron and a virtual photon γ which, in turn, takes part in γ + X −→ Y
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process. At the leading order (LO) in perturbation theory the matrix element for the electron

splitting into a collinear electron and a virtual photon is given by

1

2

∑
pol

|M|2 =
2e2p2

⊥
z(1− z)

[
1 + (1− z)2

z

]
, (1.51)

where the sum was taken over all possible polarizations. The cross section for the process in

Fig. 1.13 a) is given by

σ̂(eX→ eY) =
1

(1 + vX)2p2EX

∫
d3k

(2π)3

1

2k0

∫
dΦY

1

2

∑
pol

|M|2
 1

q2
|MγX|2 , (1.52)

where vX is the velocity of the particle X and dΦY is the phase space for the final state Y. By

substituting Eq. 1.51 in Eq. 1.52 one can write

σ̂(eX→ eY) =

1∫
0

dz

s∫
m2

dp2
⊥

p2
⊥

α

2π

[
1 + (1− z)2

z

]
σ̂ (γX→ Y) , (1.53)

where α is the fine-structure constant and m is the electron mass. Integrating over dp2
⊥ in Eq. 1.53

we get

σ̂(eX→ eY) =

1∫
0

dz
α

2π
log

(
ŝ

m2

) [
1 + (1− z)2

z

]
σ̂ (γX→ Y) =

=

1∫
0

dz fγ(z) σ̂ (γX→ Y) , (1.54)

where we have defined

fγ(z) =
α

2π
log(ŝ/m2)

[
1 + (1− z)2

z

]
. (1.55)

One can interpret fγ(z) as a probability to find a photon with momentum zp in an electron with

momentum13 p. The factor log(ŝ/m2) in Eq. 1.54 and Eq. 1.55 is called mass singularity since

log(ŝ/m2) diverges if m −→ 0. Later in this section we will demonstrate how one can resum the

mass singularities due to the emission of multiple collinear particles which will give us to the system

of DGLAP evolution equations. However, before doing that let us consider a scattering process

shown in Fig. 1.13 b) where the initial state electron splits into a collinear photon and a virtual

electron which, in turn, takes part in e+ X −→ Y process. The corresponding expression is given by

σ̂(eX→ γY) =

1∫
0

dz fe(z) σ̂ (eX→ Y) , (1.56)

13The function fγ(z) is also called Weizsäcker-Williams distribution function, see [65].
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where

fe(z) = δ(1− z) +
α

2π
log(ŝ/m2)

1 + z2

(1− z)+
+

α

2π
log(ŝ/m2)

3

2
δ(1− z). (1.57)

The first term on the RHS of Eq. 1.57 gives the probability to have a process without a splitting,

the second term gives the probability of the perturbative splitting and the last term is due to the

contribution of virtual diagrams, see [5]. The “plus” subscript, so called plus prescription, was used

to regularize the singularity at z = 1, and is defined such that

1∫
0

dx
f(x)

(1− x)+
=

∫
dx

f(x)− f(1)

1− x (1.58)

holds.

X Y

a)

X Y

b)

Figure 1.13: Electron scattering process with emission of one collinear particle: a) Emission of a
single collinear electron. b) Emission of a single collinear photon.

Expressions given by Eq. 1.54, Eq. 1.55 and Eq. 1.56, Eq. 1.57 describe scattering processes

with emission of one collinear particle shown in Fig. 1.13. Now let us discuss the processes with

multiple emission of collinear particles. As an example we consider a process with emission of

multiple collinear photons which is schematically shown in Fig. 1.14.

X Y

Figure 1.14: Multiple initial state emission of collinear photons.

One can show that if after each emission of a collinear photon the transverse momentum of an

intermediate electron becomes smaller, e. g. p1⊥ > p2⊥ > p3⊥..., then the n’th emission gives a

factor

1

n!

( α
2π

)n
logn

(
ŝ

m2

)
. (1.59)

One can take these multiple emissions into account by considering them as a continuous process and

by making distribution functions fe and fγ scale dependent. Consider, for example, the probability

to find a photon inside of an electron. The differential probability to emit a collinear photon is
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equal to

α

2π

dp2
⊥

p2
⊥

1 + (1− z)2

z
. (1.60)

Therefore, a probability to find a photon with p⊥ in the range between Q and Q+ ∆Q is given by

fγ(x,Q+ ∆Q) = fγ(x,Q) +

1∫
0

dx′
1∫

0

dz
α

2π

∆Q2

Q2

[
1 + (1− z)2

z

]
fe(x

′, p⊥)δ(x− zx′)

= fγ(x,Q) +
∆Q

Q

α

π

1∫
x

dz

z

[
1 + (1− z)2

z

]
fe(x/z, p⊥), (1.61)

and in the limit where ∆Q→ 0 we can write

∂fγ(x,Q)

∂ logQ
=
α

π

1∫
x

dz

z

[
1 + (1− z)2

z

]
fe(x/z,Q). (1.62)

A similar equation can be written for fe(x,Q):

∂fe(x,Q)

∂ logQ
=
α

π

1∫
x

dz

z

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
fe(x/z,Q). (1.63)

However, in order to complete this system of integro-differential equations, one has to take into

account so called pair creation processes where a photon splits into an electron-positron pair. A

complete system of such equations was first obtained by Gribov and Lipatov [67] and it is given by

∂fγ(x,Q)

∂ logQ
=

α

π

1∫
x

dz

z
{Pe→γ(z) [fe(x/z,Q) + fē(x/z,Q)] + Pγ→γ(z)fγ(x/z,Q)} (1.64)

∂fe(x,Q)

∂ logQ
=

α

π

1∫
x

dz

z
{Pe→e(z)fe(x/z,Q) + Pγ→e(z)fγ(x/z,Q)} (1.65)

∂fē(x,Q)

∂ logQ
=

α

π

1∫
x

dz

z
{Pe→e(z)fe(x/z,Q) + Pγ→e(z)fγ(x/z,Q)} , (1.66)

where

Pe→e(z) =
1 + z2

(1− z)+
+

3

2
δ(1− z), (1.67)

Pe→γ(z) =
1 + (1− z)2

z
, (1.68)

Pγ→e(z) = z2 + (1− z)2 , (1.69)

Pγ→γ(z) = −2

3
δ(1− z), (1.70)

are LO QED splitting functions.
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The equations 1.65 - 1.66 have to be solved for the following initial conditions:

fe(x,Q0) = δ(1− x), (1.71)

fγ(x,Q0) = 0, (1.72)

fē(x,Q0) = 0, (1.73)

which simply state that if no emission happens there is only an initial electron.

The results of Gribov and Lipatov [67] were generalized to the case of QCD by Dokshitzer [66]

and by Altarelli and Parisi [68]. The evolution equations obtained in [66], [68] are called DGLAP

evolution equations and are given by

∂fg(x,Q)

∂ logQ
=

αs
π

1∫
x

dz

z

Pq→g(z)∑
f

[
ff (x/z,Q) + ff̄ (x/z,Q)

]
+ Pg→g(z)fg(x/z,Q)

 , (1.74)

∂ff (x,Q)

∂ logQ
=

αs
π

1∫
x

dz

z
{Pq→q(z)ff (x/z,Q) + Pg→q(z)fg(x/z,Q)} , (1.75)

∂ff̄ (x,Q)

∂ logQ
=

αs
π

1∫
x

dz

z

{
Pq→q(z)ff̄ (x/z,Q) + Pg→q(z)fg(x/z,Q)

}
, (1.76)

where αs = g2/4π and

Pq→q(z) =
4

3

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, (1.77)

Pq→g(z) =
4

3

[
1 + (1− z)2

z

]
, (1.78)

Pg→q(z) =
1

2

[
z2 + (1− z)2

]
, (1.79)

Pg→g(z) = 6

[
1− z
z

+
z

(1− z)+
+ z(z − 1) +

(
11

12
− Nf

18

)
δ(1− z)

]
, (1.80)

are LO DGLAP splitting functions.

Since we consider proton as a uud bound state, the scale dependent PDFs fi(x,Q) in Eq. 1.74 - 1.76

obey the following sum rules:

1∫
0

dx fuv(x) = 2, (1.81)

1∫
0

dx fdv(x) = 1, (1.82)

1∫
0

dx [fqs(x)− fq̄s(x)] = 0, (1.83)

where fuv ≡ fu − fū, fdv ≡ fd − fd̄ and qs = s, c, b, t. Also, the total longitudinal momentum of all

partons has to be equal to the longitudinal momentum of proton, which gives another sum rule
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which states the conservation of longitudinal momentum:

∑
i=g,q,q̄

1∫
0

dxxfi(x) = 1, (1.84)

where q = d, u, s, c, b, t.

Like in the QED case, Eq. 1.74 - 1.76 have to be solved with appropriate initial conditions which

in the case of QCD are unknown and have to be determined out of the experimental data. After

determining initial conditions one can use DGLAP equations to “evolve” PDFs up to an arbitrary

factorization scale, see Fig. 1.15.

a) b)

Figure 1.15: MSTW2008 LO PDFs [298] at different values of the factorization scale Q:
a) Q = 1 GeV, b) Q = 10 GeV.

The results described in this chapter form the basis of the QCD and the QCD-improved parton

model. In Chapter 2 we will discuss the generalization of the LO DGLAP equations and sum rules

given by Eq. 1.81 - 1.84 to the case of the dPDFs we need to describe DPS processes.
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Chapter 2

Theoretical foundations of double

parton scattering

Since hadrons are composite particles, it is quite natural to consider a possibility that two and

more hard scatterings will occur during one hadron-hadron collision. Despite the simplicity of this

assumption, a complete theory of such scattering processes is yet to be developed. In this chapter

we will briefly describe theoretical foundations of a simplest example of multiple partonic interaction

(MPI) process, so called double parton scattering (DPS) process. We will start with a short historical

review of first groundbreaking studies in this field and currently available experimental measurements

of DPS. Later in this chapter we will describe the main developments in theoretical description of

DPS. In particular, we will discuss the evolution of double parton distribution functions (dPDFs),

problem of UV-singularities and double counting as well as the role of DPS in proton-nucleus (pA)

collisions.

2.1 Brief historical review

The “Era of DPS” begins in late seventies - early eighties of the past century. In 1978 Landshoff and

Polkinghorne discussed a multi-jet production via MPI mechanism at the first time [111]. One year

later, Donnachie and Landshoff studied the process of multiple elastic quark scattering [113]. In the

same year Takagi studied the processes of double and triple hard interactions in πA collisions at

the first time [112]. In 1980 Goebel, Scott and Halzen published a paper called “Double Drell-Yan

annihilations in hadron collisions: Novel tests of the constituent picture” [114]. In Ref. [114] a

formula for the double Drell-Yan differential cross section was given for the first time:

d4σDPS

dM dy dM ′ dy′
=

∑
a1,a2,b1,b2

e2
i e

2
i′

πR2
Γa1,a2/hA(x1, x

′
1) Γb1,b2/hB (x2, x

′
2)×

× d2σ̂

dM dy

(
a1 b1 → γ∗ → ll̄

) d2σ̂

dM ′ dy′
(
a2 b2 → γ∗ → ll̄

)
, (2.1)

where Γa1,a2/hA(x1, x
′
1) is a probability to find two partons of a type a1 and a2 in a hadron of a type

A carrying fractions x1 and x′1 of the longitudinal momentum of hA. A normalization factor πR2

takes its origin in the paper on multiple elastic scattering of quarks by Donnachie and Landshoff

25
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[113]. The authors of [113], [114] have argued that one can estimate the size of πR2 using following

geometrical considerations: let us assume that we deal with a collision of two hadrons and that

R is of the order of a hadron’s radius, then the probability that a parton a2 in one hadron then

interacts with a parton b2 in the other hadron is approximately equal to σa2,b2/πR
2. Therefore,

if one hard collision with a cross section σa1,b1 already took place one has to multiply it by a

probability σa2,b2/πR
2 in order to get the total DPS cross section. Relying on these considerations,

one can simply see πR2 as a transverse area of a hadron expressed in the units of cross section.

Since the distribution functions Γa1,a2/hA(x1, x2) are unknown objects, one has to use certain

phenomenologically motivated assumptions to model them. In order to make a numerical estimate of

the double Drell-Yan cross section, the authors of [114] assumed that one can express Γa1,a2/hA(x1, x2)

in terms of “standard” collinear PDFs as

Γa1,a2/hA(x1, x2) = fa1/hA(x1) fa2/hA(x2) (1− x1 − x2), (2.2)

where the factor (1−x1−x2) was added to ensure a smooth suppression of Γa1,a2/hA(x1, x2) close to

a kinematic boundary x1 +x2 < 1. Here we shall stress that this approach to model Γa1,a2/hA(x1, x2)

neglects possible correlations between x1 and x2 as well as violates conservation of a number of

partons of different flavour. Nevertheless, Eq. 2.2 being combined with Eq. 2.1 allows to make

some important predictions; in particular, the authors of [114] computed the double Drell-Yan cross

section at the collision energy
√
S = 25 GeV and argued that it can be measured experimentally.

Additionally, it was predicted that DPS processes should acquire an additional enhancement in

pA and nucleus-nucleus (AA) collisions [114]. Moreover, it was mentioned that DPS events in pA

collisions may originate not only from a collision between a proton and a single nucleon but also

from a collision between a proton and two independent nucleons1 [114]. Also we have to note here

that the authors of [113], [114] have argued that the interpretation of πR2 as a transverse area of a

proton is a very rough estimate and a better knowledge of proton structure is required for more

precise computations. In fact, there is a deep connection between a structure of proton and a value

of πR2 which will be explained later in this thesis.

In 1980 Politzer [115] proposed an idea to formulate QCD in terms of multiconstituent distribution

functions Γ(x1, x2, ..., xn) which can be seen as a generalization of distribution functions from Eq.

2.1 and, independently from Goebel et al., provided a differential cross section for a double Drell-Yan

process. Two years later Paver and Treleani [116] extended ideas of Politzer2 to the processes of

double hard scattering of quarks in hadron-hadron collisions, see Fig. 2.1, and provided a double

differential cross section for a four-jet DPS production process:

σDPS =
∑

a1,a2,b1,b2

∫ 4∏
i=1

dxi d
2bΓa1,a2/hA(x1, x2, b) Γb1,b2/hB (x3, x4, b)×

× σ̂a1 b1→J1 J̄1
σ̂a2 b2→J2 J̄2

δ
(
ŝ1 + t̂1 + û1

)
δ
(
ŝ2 + t̂2 + û2

)
. (2.3)

The crucial difference between this formula and Eq. 2.1 is that here a distribution function

Γa1,a2/hA(x1, x2, b) now gives a probability to find two partons of a type a1 and a2 carrying

1We will discuss the development of this idea in section 2.6 while considering DPS in pA collisions.
2In their paper Paver and Treleani do not cite the study of Goebel et al.
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Figure 2.1: A schematic representation of a DPS process.

longitudinal momentum fractions x1 and x2 of a hadron hA separated by a relative transverse

distance |b|. The connection between Γa1,a2/hA(x1, x2, b) and factor 1/πR2 from Eq. 2.1 becomes

clear if one assumes that Γa1,a2/hA(x1, x2, b) can be written as a product of longitudinal- and

transverse-dependent functions as

Γa1,a2/hA(x1, x2, b) ≈ Da1,a2/hA(x1, x2)F (b), (2.4)

which implies that Eq. 2.3 transforms to

σDPS =
1

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiDa1,a2/hA(x1, x2)Db1,b2/hB (x3, x4)×

× σ̂a1 b1→J1 J̄1
σ̂a2 b2→J2 J̄2

δ
(
ŝ1 + t̂1 + û1

)
δ
(
ŝ2 + t̂2 + û2

)
, (2.5)

where

σeff =

[∫
d2b F 2(b)

]−1

. (2.6)

We see that πR2 = σeff and that it depends now on a distribution of partons in a transverse plane

of a hadron which is given by the function F (b). Later in this thesis, we will discuss a connection

between σeff and Γa1,a2/hA(x1, x2; b) in more detail. Also, to avoid a clash of different notations,

we will always use σeff instead of πR2.

In 1983 Paver and Treleani published another paper [118] where numerical estimate of a

DPS contribution to the four-jet production was given. In the same year Humbert, expressing

Γa1,a2/hA(x1, x2) in the form as in Eq. 2.2, evaluated a differential DPS cross section for the four-jet

DPS production and gave an estimate of a size of longitudinal parton correlations (correlations in

x-space) [120].

In 1984 Humbert and Odorico [121] studied the four-jet production via DPS and single parton

scattering (SPS) mechanisms. It was found that the four-jet DPS and SPS cross sections for the

collision energies
√
S = 0.62, 2, 20 TeV are of competitive size. Moreover, a set of DPS sensitive

variables to discriminate between SPS and DPS contributions to the four-jet production was proposed
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at the same time [121]. A similar analysis was performed one year later by Ametller, Paver and

Treleani [122]. In [122] the four-jet DPS cross section was compared against analytical results for the

four-jet SPS cross section from [110]. Finally, in 1986 Halzen, Hoyer and Stirling have published a

paper [123] where they have demonstrated that their computations for double Drell-Yan production

can explain available at the time data on multimuon production in pp [124] and π−p [125] collisions

measured by the NA3 collaboration.

The aforementioned studies have drawn attention of the experimental community to the DPS

phenomena and in 1986 first experimental measurements of DPS were performed. The experimental

measurements of DPS, however, rely on various model dependent assumptions. In order to illustrate

it, let us rewrite Eg. 2.3 in a slightly different form:

σDPS
AB =

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxid
2bΓa1,a2/hA(x1, x2, b) Γb1,b2/hB (x3, x4, b)×

× σ̂a1 b1→A σ̂a2 b2→B, (2.7)

where A and B denote final states in 2 → 2 reactions and we omitted δ
(
ŝ1 + t̂1 + û1

)
and

δ
(
ŝ2 + t̂2 + û2

)
(from now on we will always assume that condition ŝ + t̂ + û = 0 holds for

both 2→ 2 processes). Using Eq. 2.4, one can factorize x- and b-dependent parts and write

σDPS
AB =

1

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiDa1,a2/hA(x1, x2)Db1,b2/hB (x3, x4)×

× σ̂a1 b1→A σ̂a2 b2→B. (2.8)

If we neglect now correlations in x space, namely if we factorize Da1,a2/hA(x1, x2) as

Da1,a2/hA(x1, x2) ≈ fa1/hA(x1) fa2/hA(x2), we can write

σDPS
AB =

1

σeff

∑
a1,b1

∫
dx1 dx3 fa1/hA(x1) fb1/hB (x3) σ̂a1 b1→A ×

×
∑
a2,b2

∫
dx2 dx4 fa2/hA(x2) fb2/hB (x4) σ̂a2 b2→B, (2.9)

which can be written in a compact form as

σDPS
AB =

σSPS
A σSPS

B

σeff
, (2.10)

which is sometimes called as “pocket formula of DPS” in the literature.

One important remark has to be made here: if one deals with indistinguishable final states A

and B, one has to multiply this formula by a symmetry factor 1/2, thus3

σDPS
AB =

1

1 + δAB

σSPS
A σSPS

B

σeff
. (2.11)

Consider now a four-jet production in pp collisions pp→ 4j. Obviously, both DPS and SPS can

3The symmetry factor 1/2 in front of the DPS cross section has a different origin in different studies which may
lead to a possible confusion. In Chapter 4.2 we will discuss it in more details.
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contribute to production of this final state. If we could now somehow discriminate between events

produced via pp
DPS−−−→ 4j and pp

SPS−−→ 4j processes, we could measure a DPS cross section and thus

find a value of σeff with a help of Eq. 2.11.

In July 1986 the Axial Field Spectrometer (AFS) collaboration reported first measurements

of DPS events in pp → 4j at
√
S = 63 GeV collision energy and found σeff = 5 mb [128]. These

analyses, despite their importance, had some deficiencies. First, the uncertainties for σeff were not

provided. Secondly, the exact matrix elements for QCD 2→ 4 processes were not used, therefore

the estimated SPS background and thus the fraction of DPS events cannot be trusted. In 1991

UA2 collaboration studied DPS events in pp̄→ 4j process at
√
S = 630 GeV and found the lower

bound for σeff to be equal to 8.3 mb [129]. Two years later CDF collaboration studied DPS events

in pp̄ → 4j process at
√
S = 1.4 TeV and found σeff = 12.1+10.7

−5.4 mb [130]. In 1997 CDF studied

DPS in pp̄→ 3j + γ [131] and in pp̄→ 3j + γ/π0 processes [132] at
√
S = 1.8 TeV and reported

σeff = 14.5± 1.7+1.7
−2.3 mb.
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Figure 2.2: Currently available measurements of σeff , from [134].

After the above mentioned measurements followed a twelve years break. Experimental studies of

DPS were resumed in 2009 when DØ collaboration measured DPS in pp̄→ 3j + γ production process

at
√
s = 1.96 TeV [133]. In 2012 LHCb measured DPS in pp→ J/ψ + hX production process where

hx = D0, D+, D+
s Λ+

c at
√
S = 7 TeV [135]. In 2013 ATLAS and CMS collaborations measured

DPS in pp→ 2j + W (→ lν) process at
√
s = 7 TeV [136], [137] and CMS collaboration measured

DPS in pp→ 4j process [108]. In 2014 DØ collaboration measured DPS for the pp→ J/ψ + J/ψ,

γ + 3j and γ + b/c+ 2j production processes at
√
s = 1.96 TeV [138], [139], and ATLAS imposed a
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lower bound on σeff in pp→ J/ψ + Z process at
√
s = 8 TeV [140]. In 2015 LHCb collaboration

measured DPS in production of bottomonia and open charm hadrons [141] and DØ observed DPS in

simultaneous production of J/ψ and Υ mesons [142] and in pp̄→ 2j + 2γ [143]. In the same year the

CMS collaboration measured DPS production in pp→ 3j + γ process [144]. Unfortunately, no clear

DPS signal was extracted from the collected data. In 2016 the ATLAS collaboration observed DPS in

pp→ 4j [145] and pp→ J/ψ + J/ψ [134] at
√
S = 7 TeV and

√
S = 8 TeV correspondingly. Finally,

in 2018 the CMS collaboration measured DPS in pp→W+W+,W−W− processes at
√
S = 8 TeV

[146]. In these measurements no DPS above the expected SPS background was observed and,

therefore, only a 95% confidence level lower limit σeff > 12.1 mb was imposed. The short summary

on all these measurements apart from [146] is given in Fig. 2.2. We see that within provided

statistical and systematic uncertainties most of the measurements of σeff agree between themselves.

Moreover, we see that there is no clear indication of dependence of σeff on collision energy, see

Fig. 2.3.
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Figure 2.3: Dependence of σeff on the process and collision energy, from [134].

There are two different experimental techniques to study DPS processes. The first one is a

so called “template method”. Within this approach one creates SPS and DPS “templates” in

the observable of interest and use them later to “split” the experimental data into the SPS and

DPS contributions correspondingly. The DPS “templates” are created either with Monte Carlo

event generators or by overlaying samples of independent SPS events. For example, one can create

a “template” for the four-jet DPS production by overlaying two independent samples of the SPS

di-jet events, see Fig. 2.4. Both approaches to create templates have their disadvantages. The

Monte-Carlo approach depends on the Monte Carlo model being used to simulate DPS events. The

DPS “templates” created by overlaying different data samples are expected to be model independent,

however, completely neglect possible correlations between produced final state particles. The

template technique can be combined with the machine learning methods as it was done in the

ATLAS four-jet DPS measurements [145]. In that paper the artificial neural network “trained” with

different DPS “templates” was used to extract the DPS signal out of the collected data. In 2015
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the second method so called “inclusive fit” was proposed [147]. According to this approach, one

produces MPI tunes for the general purpose event generators using only MPI sensitive distributions

as an input. During the fitting procedure only the parameters of the MPI model of a given event

generator are tuned to get the agreement with the data. Ones the parameters of the MPI model are

fixed one can use them to calculate the value of σeff , see [147]. Therefore, we can conclude that

all available extractions of σeff can be affected by various model uncertainties. Nevertheless, the

available measurements allow to make some important conclusions concerning the existence of the

partonic correlations. In order to illustrate it, let us show how one can estimate the value of σeff

assuming no correlations between constituents of a proton. As we have seen before, assumption

about factorization of Γa1,a2/hA(x1, x2, b) into longitudinal and transverse pieces allows to express

σeff in terms of the distribution function F (b) which gives a probability to find two partons separate

by distance |b| in a transverse plane of a proton, see Eq. 2.6. Using simple models of F (b) one can

estimate the value of σeff . For example, if we assume that partons are uncorrelated and distributed

in a transverse plane of a proton according to a Gaussian with an average 〈b2〉 then we can find

σeff = 4π〈b2〉. (2.12)

Now, taking into account that 〈b2〉 ∼ (0.57fm− 0.67fm)2, we get σeff in the range between 41 and

56 mb, see the review [161]. However, as one can see in Fig. 2.2 and Fig. 2.3, the value of σeff

evaluated in this way is in a strong disagreement with available experimental measurements. This

mismatch was first noticed in 1997 by Calucci and Treleani [148]. Moreover, it was demonstrated

that two-body correlations in a transverse plane of a proton can decrease value of σeff and, therefore,

explain its small observed value [148]. This was followed by a series of publications where different

correlations mechanisms were explored, see [149] - [160] and the review [161].

The aforementioned mismatch between the observed value of σeff and estimations based upon

Gaussian parametrization of F (b), therefore, can be seen as an indication of existence of non-trivial

partonic correlations. The origin of this mismatch, however, remains unknown. One should keep in

mind that existing experimental techniques to extract σeff as well as existent theoretical approaches

to DPS rely on various assumptions. These assumptions can make exact studies of two-body

partonic correlations complicated. Moreover, available theoretical models of DPS are flawed by

different uncertainties, e.g. ignorance of two-parton distribution functions Γa1,a2/hA(x1, x2; b) and

Da1,a2/hA(x1, x2), etc.

Finally, we should stress that apart from “first principles approaches” to DPS phenomenon there

exist a broad class of Monte Carlo MPI models as implemented in general purpose event generators,

e.g. Pythia [255] - [257], Herwig++ [264] and SHERPA [267]. The detailed description of MPI

models being used in Pythia and Herwig++ can be found in corresponding publications [258] - [262]

and [265], [266]. The MPI model of SHERPA is based upon old MPI model of Pythia [259] with

some modification as it is described in [267]4. These MPI models are widely used to simulate DPS

processes5. The aforementioned Monte Carlo models of MPI were developing in parallel to the “first

4There is also a new model of MPI under development, see [268].
5Since a typical MPI event contains one hard interaction and several soft interactions the generation of DPS events

with the MPI models can be quite time consuming. The Pythia event generator starting from version 8 [256], [257]
supports a possibility always generate two hard interaction in one hadron-hadron collision. Later in Chapter 6 we will
discuss the DPS and MPI models of Pythia in more details.
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Figure 2.4: Template method to extract the fraction of the DPS events, from [145]. Distribution in
terms of the transverse momentum imbalance of the third and fourth jets.

principles” models of DPS and, therefore, significantly differ from them in many places. Whereas

the Monte Carlo models are widely used in experimental analysis, the “first principles” DPS models

possess a lot of open purely theoretical problems which makes their implementation into Monte

Carlo generators complicated.

2.2 Evolution of double parton distribution functions

In the previous section we have seen how the theory of DPS can be formulated in terms of objects

Γa1,a2/hA(x1, x2, b) and Da1,a2/hA(x1, x2). In the following we will call Γa1,a2/hA(x1, x2, b) generalized

parton distribution functions (gPDFs) and Da1,a2/hA(x1, x2) double parton distribution functions

(dPDFs).

In the previous chapter, we have seen that the emission of collinear particles leads to violation

of the Bjorken scaling and to scale dependent PDFs. Therefore, it is natural to try to consider scale

dependent dPDFs and to find a system of intergo-differential equations describing their evolution.

Such equations were first introduced by Kirschner in 1979 [164] and three years later by Shelest,

Snigirev and Zinovev [167], [168] 6. These equations, also called double DGLAP evolution equations

6Similar evolution equations for quark fragmentation functions were derived in [165], [166].
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(dDGLAP), can be written as

dDj1j2(x1, x2, t)

dt
=

αs
2π

∑
j′1

1−x2∫
x1

dx′1
x′1

Pj′1→j1

(
x1

x′1

)
Dj′1j2

(x′1, x2, t) +

αs
2π

∑
j′2

1−x1∫
x2

dx′2
x′2

Pj′2→j2

(
x2

x′2

)
Dj2j′2

(x1, x
′
2, t) +

αs
2π

∑
j′

Pj′→j1j2

(
x1

x1 + x2

)
fj′(x1 + x2, t)

1

x1 + x2
, (2.13)

where fj′(x, t) are “standard” collinear PDFs and we have dropped the subscript hA in Dj1j2/hA in

order not to overload the notation. Here we use a dimensionless evolution parameter t = log(Q/Q0)

where Q and Q0 are final and initial values of the evolution scale respectively. The first two terms

on the RHS of Eq. 2.13 involve standard DGLAP LO splitting functions Pj′1→j1(x) introduced in

Chapter 1.5. Here we note that the first two terms on the RHS of Eq. 2.13, despite presence of two

Bjorken variables, essentially have the same structure as standard DGLAP splitting kernels from Eq.

1.77 - 1.80. The last term, however, is new. It couples dDGLAP evolution equations to standard

DGLAP equations, Eq. 1.74 - 1.76, and depends on the splitting functions Pj′→j1j2(x) which are

new objects: if Pj′→j(x) can be interpreted as a probability that a parent parton j′ will emit a

parton j with p2
⊥ � Q2 carrying a fraction x of the longitudinal momentum of a parent parton j′

then the splitting function Pj′→j1j2(x) can be interpreted as a probability that the parent parton j′

will split into two partons j1 and j2 both having p2
⊥ � Q2 and carrying respectively fractions x

and 1 − x of the longitudinal momentum of j′. At the leading order one can express the sum of

Pj′→j1j2(x) in terms of standard DGLAP splitting functions via

PRi→j(x) =
∑
k

Pi→jk(x), (2.14)

where PRi→j(x) are given by the real parts of the DGLAP splitting functions Eq. 1.77 - 1.80, see

Chapter 2 of [170]. This term effectively includes processes where one parton splits perturbatively

into two partons both having p2
⊥ � Q2, for example g → q q̄. Therefore, below we will refer to it as

to “splitting” term or as to “1v2” term.

In addition to the derivation of dDGLAP equations authors of [164], [167] and [168] demonstrated

that the solution of Eq. 2.13 cannot be expressed in a factorized form as

Dj1j2(x1, x2, t) = fj1(x1, t)fj2(x2, t), (2.15)

where fji(xi, t) are collinear single parton distribution functions. Moreover, even if we assume the

absence of the correlations at the initial scale, or, in other words, if we use a factorization ansatz

Dj1j2(x1, x2, t0) = fj1(x1, t0) fj2(x2, t0) θ(1− x1 − x2) (2.16)

as an initial condition to solve Eq. 2.13, the evolution effects will violate this factorized ansatz at

higher factorization scales [169]. The first numerical estimates of these effects were given in [171],
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[172] where the technique of Mellin transformation was used to solve Eq. 2.13. In [169] the impact

of the evolution effects on double gluon-gluon dPDFs was shown to be of the order of 10% for the

scales of the Tevatron hard processes (∼ 5 GeV) and of the order of 30% for the scales of the LHC

hard processes (∼ 100 GeV). In [172] the impact of the evolution effects on the DPS production of

same-sign W-bosons and bb̄ pairs was studied. The impact of the evolution effects on the DPS cross

section for the same-sign production of W-bosons was found to be of the order of 40% at 1 TeV

collision energy and of the order of 20% at 14 TeV collision energy. In case of the DPS production

of the bb̄ pairs the impact of the evolution effects on the DPS cross section was found to be of the

order of 10− 15% at 1 TeV collision energy and of the order of 5% at 14 TeV collision energy.

However, the discussion in [169], [172] did not concern the sum rules for dPDFs. In 2009 Gaunt

and Stirling demonstrated that the following sum rules:

∑
j1

1−x2∫
0

dx1 x1Dj1j2(x1, x2, t) = (1− x2) fj2(x2, t), (2.17)

∑
j1

1−x2∫
0

dx1Dj1j2(x1, x2, t) = Nj1v fj2(x2, t), if j2 6= j1 or j̄1, (2.18)

∑
j1

1−x2∫
0

dx1Dj1j2(x1, x2, t) = (Nj1v − 1) fj2(x2, t), if j2 = j1, (2.19)

∑
j1

1−x2∫
0

dx1Dj1j2(x1, x2, t) = (Nj1v + 1) fj2(x2, t), if j2 = j̄1, (2.20)

where j1v = j1 − j̄1 (j1 6= g) and Nj1v is the number of valence j1 quarks in the proton, are not

violated by the dDGLAP evolution if they were preserved at the initial scale t0 [173]. The first sum

rule stands for a conservation of a longitudinal momentum. Its meaning becomes clear if one divides

both sides by Dj2(x2, t). Then one can interpret a ratio Dj1j2(x1, x2, t)/Dj2(x2, t) as a conditional

probability P(j1, x1, t | j2, x2, t) to find a parton j1 carrying a fraction x1 of a proton’s longitudinal

momentum assuming that there already exist a parton of a type j2 carrying a fraction x2 of a

proton’s longitudinal momentum. Then

∑
j1

1−x2∫
0

dx1 x1 P(j1, x1, t|j2, x2, t) = (1− x2),

which has a clear interpretation: the integral on the LHS gives a total longitudinal momentum

of all partons apart from j2. The other three sum rules are generalized “standard” number rules

which account for changes in a valence quark content. In the following we will refer to the dPDFs

sum rules set by Eq. 2.17 - 2.20 as to GS sum rules. The connection between the momentum

sum rule and the splitting term on the RHS of Eq. 2.13 was studied in [158], [176]. The GS sum

rules were recently proved by Diehl, Plöß and Schäfer [177] in all orders of perturbation theory

for “bare” dPDFs and for dPDFs renormalized according to the MS scheme7. We also shall notice

7In the Appendix C of [170] the GS sum rules were proved within the light-cone wave function framework. However,
in [170] the explicit analysis of the UV-divergences and associated scale dependence of dPDFs was not provided.



2.2. EVOLUTION OF DOUBLE PARTON DISTRIBUTION FUNCTIONS 35

that GS sum rules are nothing else but constraints which preserve conservation of the longitudinal

momentum as well as of the number of valence quarks in DPS processes and, therefore, any realistic

model of dPDFs should directly or indirectly obey Eq. 2.17 - 2.20. An example of such model is a

model of dPDFs used in the Pythia event generator [255], [256], [260]. This model does not include

dDGLAP evolution effects and accounts for momentum and number conservation by reweighting

single collinear PDFs and by “squeezing” available phase space after each interaction. Later in

Chapter 6 we will provide a detailed comparison between both Pythia and dDGLAP approaches to

dPDFs. In particular, we will study how well both approaches satisfy Eq. 2.17 - 2.20, discuss some

recent improvements in Pythia’s model of DPS and show how different models of dPDFs affect

various DPS distributions.

Since initial conditions for dDGLAP equations are unknown, one can use the GS sum rules,

Eq. 2.17 - 2.20, as a guiding tool to constrain dPDFs at initial evolution scale. It is quite natural to

assume that the initial conditions can be expressed in terms of single collinear PDFs. However, the

authors of [173] also demonstrated that one cannot express the initial conditions for Djvjv(x1, x2, t0)

as a factorized product of two PDFs without violating sum rules given by Eq. 2.17 - 2.20. They

additionally proposed a form of the initial condition for Djvjv(x1, x2, t0) which approximately satisfies

Eq. 2.17 - 2.20:

Djvjv(x1, x2, t0) =
Njv − 1

Njv

Djv(x1, t0)Djv(x2, t0) ρjvjv(x1, x2)− 2gjj̄(x1 + x2, t0), (2.21)

where

ρjvjv(x1, x2) = (1− x1 − x2)2 (1− x1)−2−α(j) (1− x2)−2−α(j), (2.22)

with α(i) = 0 if i is a sea parton and with α(i) = 0.5 if i is a valence parton, and the function

gjj̄(x1 + x2, t0) is defined as

gjj̄(x, t0) = −
∂Dj̄(x, t0)

∂x
. (2.23)

After the study of Gaunt and Stirling, an attempt to improve their way to construct initial

conditions for dDGLAP equations was made by other authors, see [178] and [179]. However, despite

successful solution for double gluon distributions8, the approach of [178] turned out to have some

significant flaws for double quark distributions [179]. Namely, it leads to negative values of dPDFs

and introduces asymmetry of dPDFs under simultaneous interchange of Bjorken variables and

parton labels, Dj1j2(x1, x2, t) 6= Dj2j1(x2, x1, t).

So far, we have discussed only dPDFs with both factorization scales being set to the same value

Dj1j1(x1, x2, t1 = t2 = t) which is a reasonable choice for certain DPS processes e.g. same-sign

W-boson production. However, there exist a variety of DPS processes for which unequal scales

dPDFs seem to be a more reasonable choice, e.g. four-jet DPS production9. The authors of [173]

have argued that unequal scale dPDFs can be produced by applying single DGLAP evolution

8We also shall notice that recently results of [178] for collinear dPDFs were successfully extended to kT -depended
gluon-gluon dPDFs [181].

9We shall stress here that a choice of factorization scales for DPS processes is made by analogy with standard scale
choices for SPS. To our knowledge there is no study which could advocate a specific scale choice.
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equations to equal scale dPDFs. For example, one can take Dj1j1(x1, x2, t1 = t2 = t) and perform

single DGLAP evolution for a given value of x2 from t2 = t to a certain value t2 > t1 = t keeping x1

fixed. This procedure can be repeated for all values of x2 smaller than 1− x1. Using this technique,

Gaunt and Stirling have obtained the set of unequal scale dPDFs which we will call GS09 dPDF set

[173]10.

In order to produce the GS09 set of dPDFs Gaunt and Stirling have used the LO DGLAP

splitting functions given by Eq. 1.77 - 1.80 and Eq. 2.14. Therefore, the GS09 dPDFs were

obtained by solving dDGLAP equation at the leading logarithmic approximation (LLA) accuracy

level. The short overview of the different methods to solve dDGLAP evolution equations at the LLA

accuracy level is given in Appendix J. The generalization of the results of [173] to the next-to-leading

logarithmic approximation (NLLA) accuracy level, however, is a non-trivial task. In 2011 Ceccopieri

using so called “jet calculus rules” [189] wrote down the dDGLAP evolution equations at the NLLA

accuracy level [175]. However, in [175] it was argued that the validity of the results obtained by the

“jet calculus” technique have to be confirmed by the first principles calculations. Recently Diehl,

Plößl and Schäfer [177] derived the system of the dDGLAP equations for the gPDFs in momentum

space. The splitting functions in [177] computed at the NLO accuracy level confirmed the results

of Ceccopieri [175]. The connection between the dDGLAP evolution equations for the gPDFs in

momentum space and gPDFs in position space, however, is non-trivial. Later in this chapter we

will discuss it in more details.

In order to close this section, let us note that apart from dDGLAP methods there are other

approaches which allow either to model dPDFs or to calculate them from the first principles.

Recently, first results on evaluation of the correlation functions of two quark currents in a pion

were obtained with the help of the lattice QCD techniques [182]. The dPDFs were also computed

within the Light-Front approach [183] - [186], so called “bag model” of a proton [187] and within

the AdS/QCD framework [188]. However, the discussion of these methods is beyond the scope of

this thesis.

2.3 Two parton distribution functions

The expression for the DPS cross section which includes generalized parton distributions

Γa1,a2/hA
(x1, x2; b) was first derived in the pioneer paper of Paver and Treleani for so called “scalar

partons” in 1982 [116]. One year later, Mekhfi derived a similar expression where the spin of quarks

was taken into account [117]. Later, in 2011, Diehl et al. generalized and extended the results of

[116], [117] to the case of n-hard interactions [192], [193]. Namely, the results of [192], [193] were

obtained using n-point correlations functions and generalized parton distributions defined in terms

of the light-cone field operators. In this section we will briefly sketch the results of [192], [193]

important for our phenomenological studies of the DPS phenomenon.

10In Appendix J we provide a short overview of different numerical methods to solve dDGLAP evolution equations.
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Let us start with the definition of the 2-parton correlation function

Φ(l1, l2, l
′
1, l
′
2) =

[
2∏
i=1

∫
d4ξi

(2π)4

d4ξ′i
(2π)4

eiξili−iξ
′
il
′
i

]
×

×
∫
〈p|T̄

[
φ(ξ′2)φ(ξ′1)

]
T [φ(ξ1)φ(ξ2)] |p〉, (2.24)

where T and T̄ respectively denote time-ordering and anti-time ordering of the scalar parton filed

operators φ(ξ). The variables ξi and ξ′i give position of initial and final state partons correspondingly.

The variables li and l′i are Fourier conjugates of ξi and ξ′i in momentum space. Using the translation

invariance of the matrix element 〈p|T̄ [φ(ξ′1)φ(ξ′2)]T [φ(ξ1)φ(ξ2)] |p〉 the position of one parton can

be fixed yielding

Φ(l1, l2, l
′
1) =

[∫
d4ξ1

(2π)4

d4ξ′1
(2π)4

eiξ1l1−iξ
′
1l
′
1

]
×

×
∫

d4ξ2

(2π)4
eiξ2l2〈p|T̄

[
φ(0)φ(ξ′1)

]
T [φ(ξ1)φ(ξ2)] |p〉, (2.25)

where the parton four-momenta li and l′i obey the energy-momentum conservation constraint

2∑
i=1

li =
2∑
i=1

l′i. (2.26)

y1 +
1
2z1

1
2z2

p p

k1 − 1
2r k2 − 1

2r k2 +
1
2r

−1
2z2

k1 +
1
2r

y1 − 1
2z1

Figure 2.5: Assignment of momentum and position arguments in the multiparton correlation
functions and distributions as in [193]. The dashed line denotes the final-state cut.

It is handy to rewrite Eq. 2.24 in terms of the symmetric momentum variables defined as

li = ki −
1

2
ri, (2.27)

l′i = ki +
1

2
ri. (2.28)

Using Eq. 2.27 and Eq. 2.28, one can write the energy-momentum constraint
∑2

i=1 li =
∑2

i=1 l
′
i as

2∑
i=1

ri = 0, (2.29)
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which implies r1 = −r2 ≡ r. The variable r can be seen as a momentum transfer between initial

and final state in the cut diagrams in Fig. 2.5.

Using Eq. 2.27 and Eq. 2.28 one can write correlation function Φ(l1, l2, l
′
1) in terms of k1, k2

and r as

Φ(k1, k2, r) =

[∫
d4ξ1

(2π)4

d4ξ′1
(2π)4

ei(ξ1−ξ
′
1)k1−i(ξ1+ξ′1)r/2

]
×

×
∫

d4ξ2

(2π)4
eiξ2(k2+r/2)〈p|T̄

[
φ(0)φ(ξ′1)

]
T [φ(ξ1)φ(ξ2)] |p〉. (2.30)

We can rewrite this expression using translation invariance of the matrix element. Therefore, we

“shift” ξi → ξi − ξ2/2 which gives

Φ(k1, k2, r) =

[∫
d4ξ1

(2π)4

d4ξ′1
(2π)4

d4ξ2

(2π)4
ei(ξ1−ξ

′
1)k1−i(ξ1+ξ′1)r/2 eiξ2(k2+r/2)

]
×

× 〈p|T̄
[
φ(−1

2
ξ2)φ(ξ′1 −

1

2
ξ2)

]
T

[
φ(ξ1 −

1

2
ξ2)φ(

1

2
ξ2)

]
|p〉, (2.31)

where four momenta are assigned to partons as in Fig. 2.5. It is a first “building block” for the

DPS cross section. In the following we will need so called transverse momentum dependent (TMD)

gPDFs which are defined as

Γ(x1, x2, k1, k2, r) =

[
2∏
i=1

∫
dz−i
2π

eixiz
−
i p

+

∫
d2z i
(2π)2

e−iz ik i
] [

2p+

∫
dy− d2y1 e

iy1r

]
×

×〈p|O(0, z2)O(y1, z1)|p〉, (2.32)

where

O(y, z) = φ

(
y − 1

2
z

)
i
↔
∂+φ

(
y +

1

2
z

)∣∣∣∣
y+=z+=0

. (2.33)

The operator
↔
∂+ in Eq. 2.33 is defined as

↔
∂+ = 1

2(
→
∂ −

←
∂ ) and the products of operators in Eq. 2.32

are understood to be normal ordered [193]. The variables y1, z1 and z2 describe postion of partons

as explained in Fig. 2.5 and “plus” and “minus” subscripts in Eq. 2.32 stand for the plus and minus

components of the four-vector in the light-cone coordinates11.

There is an important connection between the two-parton correlation function Φ(k1, k2, r) and

Γ(x1, x2, k1, k2, r) [193]. In the frame where the initial state proton has zero transverse momentum

it yields

Γ(x1, x2, k1, k2, r) =

[
2∏
i=1

k+
i

∫
dk−i

]
×

× (2π)32p+

∫
dr−Φ(k1, k2, r)

∣∣∣∣
k+
i =xip

+
i ,r

+
i =0

. (2.34)

In section 2.4 we will see how one can derive the expression for the DPS cross section using Eq.

2.31 and Eq. 2.34 in the so called hard scattering approximation. We will also discuss how the TMD

11For the definition of the light-cone coordinates see Appendix C.
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gPDFs Γ(x1, x2, k1, k2, r) are related to the gPDFs Γ(x1, x2, b) and the PDFs D(x1, x2). In the

following we will also need so called Sudakov form factors which can be expressed as exponents of

the total probability of the parton to decay in the range of virtualities between Q2
min and Q2

max:

Sq(Q
2
max,Q

2
min) = exp

−
Q2

max∫
Q2

min

d2k

k2

αs(k
2)

2π

1−|k |/|Qmax|∫
dz Pq→q(z)

 , (2.35)

Sg(Q
2
max,Q

2
min) = exp

−
Q2

max∫
Q2

min

d2k

k2

αs(k
2)

2π

1−|k |/|Qmax|∫
dz [zPg→g(z) +NfPq→g(z)]

 , (2.36)

where Nf is a number of flavours.

2.4 The DPS cross section

l1

q2

l̄1 q1

l2

l̄2 q1

q2

l′1l′2

l̄′1l̄′2

p

p̄

p

p̄

Figure 2.6: Collision of the left moving proton p with the right moving proton p̄. The dashed line
denotes the final-state cut. The four momenta are assigned as in [193].

Let us consider a cut diagram for the proton-proton collision shown in in Fig. 2.6. In the

reference frame where both the left moving proton p and the right moving proton p̄ have zero

transverse momentum, under the assumption that the squared energy of each interaction q2
i is much

grater than corresponding transverse momentum q i, one can write the DPS cross section as

dσ =
1

C

1

4pp̄

[
2∏
i=1

d4qi
(2π)4

] [∫
d4kid

4k̄i(2π)4δ4
(
qi − ki − k̄i

)]
×

×
[∫

d4rd4r̄ (2π)4δ4(r + r̄)

]
×

×
[

2∏
i=1

Hi(qi, ki, k̄i, r, r̄)

]
Φ(ki, r)Φ̄

(
k̄i, r̄

)
, (2.37)

where ki, ri and k̄i, r̄i are the four-momenta of the left moving proton p and the right moving
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proton p̄ obtained from li, l̄i according to Eq. 2.27 and Eq. 2.28, Φ(k1, k2, r) and Φ̄
(
k̄1, k̄2, r̄

)
are

two-parton correlation functions defined as in Eq. 2.31, Hi(qi, ki, k̄i, ri, r̄i) is the squared amplitude

of the i’th hard process and C is a combinatorial factor equal to 2! = 2 for production of two

identical final states.

One can simplify this expression using so called hard-scattering approximation. Within this

approximation, we assume that all hard interactions have a certain characteristic scale Q which is

of the order of the center-of-mass energy of each hard interaction Q2 ≈ q2
i . We also assume that all

partons which participate in hard interactions shown in Fig. 2.6 have virtualities much smaller than

Q2. Finally, we assume that the transverse momenta of the initial state partons are much smaller

than Q. These assumptions allow us to write:

k+
i ∼ r+

i ∼ p+ ∼ q+
i ∼ Q, k̄−i ∼ r̄−i ∼ p̄− ∼ q̄−i ∼ Q, (2.38)

k−i ∼ r−i ∼ p− ∼ Λ2/Q, k̄+
i ∼ r̄+

i ∼ p̄+ ∼ Λ2/Q, (2.39)
and

|k i| ∼ |r | ∼ |k̄ | ∼ |r̄ | ∼ |q i| ∼ Λ. (2.40)

Therefore, in the reference frame where both protons p and p̄ have zero transverse momentum, one

can write

xi = q+
i /p

+, (2.41)

x̄i = q−i /p̄
−
i , (2.42)

where xi and x̄i are Bjorken variables for the i’th parton in the protons p and p̄ respectively. Then

the collision energy of protons
√
S and the collision energies of partons ŝi are given by

S = (p+ p̄)2 ≈ 2pp̄ ≈ 2p+p−, (2.43)

ŝi = q2
i ≈ 2q+q− ≈ xix̄iS. (2.44)

The constraint δ4(r + r̄) in Eq. 2.37 can be written as δ2(r + r̄) δ(r+ + r̄+) δ(r− + r̄−) which

forces r+ component to be of the same order as r̄− component:

r+ ∼ r̄− ∼ Λ2/Q, (2.45)

which is a small quantity. Similarly, δ4(qi − ki − k̄i) gives q+
i = k+

i + k̄+
i and q−i = k−i + k̄−i which

implies

q+
i ∼ k+

i + Λ2/Q, (2.46)

q−i ∼ Λ2/Q+ k̄−i , (2.47)

or, up to the terms of the order of Λ2/Q, one can approximate

q+
i ≈ k+

i , (2.48)

q−i ≈ k̄−i . (2.49)
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This approximation fixes the longitudinal momenta in the correlation functions Φ and Φ̄ in

Eq. 2.37. Moreover, since all transverse components of ki, k̄i, r, r̄ and qi are small, we assume

that the amplitude squared Hi does not depend on them. Therefore, Hi can depend only on

longitudinal degrees of freedom. However, Eq. 2.45 allows to neglect the dependence on r+

and r− and Eq. 2.48, Eq. 2.49 reduce a set of independent variables to q+ and q−i . Therefore

Hi(qi, ki, k̄i, ri, r̄i) ≈ Hi(q
+
i , q

−
i ). However, Hi has to be invariant under the boost transformation in

the longitudinal direction. Because q2
i = 2q+

i q
−
i − q2

i ≈ 2q+
i q
−
i , we can write Hi(q

+
i , q

−
i ) = Hi(q

2
i ).

We can apply now the aforementioned approximations to Eq. 2.37. First of all, let us write it as

dσ =

{
2∏
i=1

. . .

}[∫
dk+
i dk

−
i dk̄

+
i dk̄

−
i δ
(
q+
i − k+

i − k̄+
i

)
δ
(
q−i − k−i − k̄−i

)]
×

×
[∫

dr+dr−dr̄+dr̄− δ(r+ + r̄+) δ(r− + r̄−)

]
×

×
[

2∏
i=1

Hi(qi, ki, k̄i, r, r̄)

]
Φ(ki, r)Φ̄

(
k̄i, r̄

)
, (2.50)

where
{∏2

i=1 . . .
}

stands for

{
2∏
i=1

. . .

}
=

1

C

1

4pp̄

[
2∏
i=1

d4qi
(2π)4

] [∫
d2k id

2k̄ i(2π)4δ2
(
q i − k i − k̄ i

)]
×

×
[∫

d2rd2r̄ (2π)4δ2(r + r̄)

]
. (2.51)

The delta functions in Eq. 2.50 reduce the number of integrations, so we have

dσ =

{
2∏
i=1

. . .

}[
2∏
i=1

∫
dk+
i dk̄

−
i dr

−dr̄+

]
×

×
[

2∏
i=1

Hi(qi, ki, k̄i, r, r̄)

]
Φ(ki, r)Φ̄(k̄i, r̄)

∣∣
k+i = q+i − k̄

+
i , r

+ = −r̄−

k̄−i = q−i − k
−
i , r̄

− = −r̄+
. (2.52)

Within the hard scattering approximation one can write Eq. 2.52 as

dσ =

{
2∏
i=1

. . .

}
2∏
i=1

Hi(q
2
i )

[∫
dk−i dr

−
]

Φ(ki, r)

∣∣∣∣
k+
i =q+

i ,r
+=0

×

×
[∫

dk̄+
i dr̄

+

]
Φ̄(k̄i, r̄)

∣∣∣∣
k̄−i =q−i ,r̄

−=0

. (2.53)

Now we can use Eq. 2.34, Eq. 2.41 and Eq. 2.42 to rewrite Eq. 2.53 in terms of the distribution

functions Γ(x1, x2, k1, k2, r). In order to do it we insert into Eq. 2.53 the following ratio:[
(2π)3k+

i 2p+

(2π)3k+
i 2p+

] [
(2π)3k̄−i 2p̄−

(2π)3k̄−i 2p̄−

]
, (2.54)
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which gives

dσ =

{
2∏
i=1

. . .

}
2∏
i=1

Hi(q
2
i )

[
1

(2π)3k+
i 2p+

] [
1

(2π)3k̄−i 2p̄−

]
×

×
[
k+
i

∫
dk−i (2π)32p+

∫
dr−

]
Φ(ki, r)

∣∣∣∣
k+
i =q+

i ,r
+=0

×

×
[
k̄−i

∫
dk̄+

i (2π)32p̄−
∫
dr̄+

]
Φ̄(k̄i, r̄)

∣∣∣∣
k̄−i =q−i ,r̄

−=0

=

=

{
2∏
i=1

. . .

}
2∏
i=1

Hi(q
2
i )

[
Γ(xi, k i, r)

(2π)3k+
i 2p+

] [
Γ(x̄i, k̄ i, r̄)

(2π)3k̄−i 2p̄−

]
. (2.55)

Regarding that within the hard scattering approximation q+
i ≈ k+

i and q−i ≈ k̄−i , one can write

dσ =

{
2∏
i=1

. . .

}
2∏
i=1

Hi(q
2
i )

1

(2π)6

1

4p+p̄−
1

q+
i q
−
i

Γ(xi, k i, r)Γ(x̄i, k̄ i, r̄). (2.56)

Now we switch from the short hand notation
{∏2

i=1 . . .
}

to the complete expression

dσ =
1

C

1

4pp̄

2∏
i=1

d4qi
(2π)4

Hi(q
2
i )

1

(2π)6

1

4p+p̄−
1

q+
i q
−
i

×

×
[∫

d2k id
2k̄ i (2π)4 δ2

(
q i − k i − k̄ i

)]
×

×
[∫

d2rd2r̄ (2π)4 δ2(r + r̄)

]
Γ(xi, k i, r)Γ(x̄i, k̄ i, r̄). (2.57)

Using the constraint imposed by δ2(r + r̄) and cancelling (2π) factors we get

dσ =
1

C

1

4pp̄

2∏
i=1

d4qi
(2π)2

Hi(q
2
i )

1

4p+p̄−
1

q+
i q
−
i

×

×
[∫

d2k id
2k̄ iδ

2
(
q i − k i − k̄ i

)]
×

×
∫
d2r Γ(xi, k i, r) Γ(x̄i, k̄ i,−r). (2.58)

The four-volume d4qi in the light-cone coordinates can be written as d4qi = d2q idq
+
i dq

−
i or, using

Eq. 2.41 and Eq. 2.42, one can write the four-volume d4qi as d4qi = p+p̄−d2q idxidx̄i. Substituting
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this expression for the four-volume into Eq. 2.58 and using pp̄ = p+p̄− one can write

dσ =
1

C

2∏
i=1

d2q i
(2π)2

dxidx̄i
Hi(q

2
i )

4q+
i q
−
i

×
[∫

d2k id
2k̄ i δ

2
(
q i − k i − k̄ i

)]
×

×
∫
d2r Γ(xi, k i, r) Γ(x̄i, k̄ i,−r) =

=
1

C

2∏
i=1

d2q i
(2π)2

dxidx̄i
Hi(q

2
i )

2q2
i

×
[∫

d2k id
2k̄ i δ

2
(
q i − k i − k̄ i

)]
×

×
∫
d2r Γ(xi, k i, r) Γ(x̄i, k̄ i,−r), (2.59)

where we have used q2
i ≈ 2q+

i q
−
i . Because Hi(q

2
i ) is an amplitude squared for the i’th hard process

and q2
i ≈ ŝi we can write σ̂i(q

2
i ) = Hi(q

2
i )/2q2

i which yields the expression for the DPS cross section

dσ =
1

C

2∏
i=1

d2q i
(2π)2

dxidx̄i σ̂i(q
2
i )×

[∫
d2k id

2k̄ i δ
2
(
q i − k i − k̄ i

)]
×

×
∫
d2r Γ(xi, k i, r) Γ(x̄i, k̄ i,−r), (2.60)

which can be written as

dσ∏2
i=1 d

2q idxidx̄i
=

1

C

2∏
i=1

1

(2π)2
σ̂i(q

2
i )×

[∫
d2k id

2k̄ i δ
2
(
q i − k i − k̄ i

)]
×

×
∫
d2r Γ(xi, k i, r) Γ(x̄i, k̄ i,−r). (2.61)

Now, in order to get the formula for the DPS cross section derived first by Paver and Treleani,

we have to integrate over k i and k̄ i and take the Fourier transform with respect to r . Let us define

the Fourier transform of Γ(xi, k i, r) as

Γ(xi, k i, r) =

∫
d2b e−ibr Γ(xi, k i, b). (2.62)

By applying Eq. 2.62 to Eq. 2.61 we get

dσ∏2
i=1 d

2q idxidx̄i
=

1

C

2∏
i=1

1

(2π)2
σ̂i(q

2
i )×

[∫
d2k id

2k̄ i δ
2
(
q i − k i − k̄ i

)]
×

×
∫
d2r d2b d2b ′ e−ir(b−b′) Γ(xi, k i, b) Γ(x̄i, k̄ i, b

′) =

=
1

C

2∏
i=1

1

(2π)2
σ̂i(q

2
i )×

[∫
d2k id

2k̄ i δ
2
(
q i − k i − k̄ i

)]
×

×
∫
d2b Γ(xi, k i, b) Γ(x̄i, k̄ i, b), (2.63)

where the factor (2π)2 was absorbed into the definition of the delta function. The TMD gPDFs

Γ(x1, x2, k1, k2, b) depend on Bjorken variables of two partons, their transverse momenta k1 and

k2, and on the difference between their position vectors in a transverse plane of a hadron b. We
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can get rid of the dependence on k1 and k2 by performing integration over q2
i :

dσ∏2
i=1 dxidx̄i

=
1

C

2∏
i=1

σ̂i(q
2
i )×

[∫
d2q i d

2k id
2k̄ i δ

2
(
q i − k i − k̄ i

)]
×

×
∫
d2b Γ(xi, k i, b) Γ(x̄i, k̄ i, b) =

=
1

C

2∏
i=1

σ̂i(q
2
i )×

1

(2π)2

[∫
d2q i d

2k i d
2k̄ i d

2z i e
−iz i(q i−k i−k̄ i)

]
×

×
∫
d2b Γ(xi, k i, b) Γ(x̄i, k̄ i, b), (2.64)

where we have used the integral representation of the delta function. Now we can rearrange the

order of integration and evaluate the integral over d2q i which results into a delta function δ2(z i)

which, in turn, allows to disentangle integration over k i and k̄ i so, finally, we have

dσ∏2
i=1 dxidx̄i

=
1

C

2∏
i=1

σ̂i(q
2
i )

∫
d2k i d

2k̄ i d
2b Γ(xi, k i, b) Γ(x̄i, k̄ i, b). (2.65)

We can define now collinear distributions

Γ(xi, b) ≡
∫
d2k i Γ(xi, k i, b), (2.66)

leading to

dσ∏2
i=1 dxidx̄i

=
1

C

2∏
i=1

σ̂i(q
2
i )

∫
d2b Γ(xi, b) Γ(x̄i, b), (2.67)

which is exactly the same expression as it was obtained by Paver and Treleani in [116]. Before

moving to the next section, we shall note that the integral over k2
i in Eq. 2.66 diverges and requires

an appropriate regularization, see [192], [193]. However, the same problem emerges for single parton

distributions [204] - [206], therefore we will not describe it here. Instead, we will concentrate on

flaws in the theoretical formalism for DPS.

2.5 Problem of double counting and UV-divergences in DPS

In sections 2.2 - 2.4 we have described the key-ingredients of the DPS phenomenology: the DPS

cross section, collinear dPDFs and dDGLAP evolution equations. However, as we discuss in this

section, the formulation of the DPS in terms of the collinear dPDFs has some flaws. We briefly

explain the origin of these flaws as well as exiting solutions to them. The details can be found either

in publications we cite or in the review [202].

Let us start the discussion from the dDGLAP evolution equations for the collinear dPDFs given

by Eq. 2.13. The splitting term on the RHS of Eq. 2.13 implies that the DPS cross section evaluated

with dPDFs which obey dDGLAP evolution equations contains three different contributions which

are schematically shown in Fig. 2.7. The “standard” DPS process is shown in Fig. 2.7 a). It

involves four partons (two from each of two colliding hadrons) which exist at the non-perturbative
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scale. In the following we will refer to such processes as to the “2v2” DPS contribution. However,

due to the splitting term on the RHS of Eq. 2.13, a situation where one, or even two, initial state

partons split perturbatively with a probability given by Pj′→j1j2(x) before two hard interaction

take place is possible. Such splittings give rise to new types of DPS processes shown in Fig. 2.7 b)

and Fig. 2.7 c). In the following we will refer to them as to “1v2” and “1v1” DPS contributions,

correspondingly.

The aforementioned theory of DPS relies on assumption about factorization of gPDFs into

collinear and transverse pieces, see Eq. 2.4. It allows to encapsulate the information about

distribution of partons in a transverse plane of a hadron into the parameter σeff and express the

DPS cross section as a convolution of two collinear dPDFs and two hard partonic cross sections, see

Eq. 2.8. However, as it was shown in [191], [192], [193], the separation of gPDFs into collinear and

transverse pieces is inconsistent with the field-theoretical formulation of DPS and leads to incorrect

description of DPS in kinematic regions in which two partons inside a proton originate from a

perturbative splitting of a single parton. The problem of the formulation of the DPS theory in

terms of the collinear dPDFs was discussed in a series of publications [190], [191], [192], [193], [195],

[197], [198], [199], [200]. Several different solutions to it were proposed in [195], [197], [199], [200].

In this section we provide a brief overview of the problem of formulation of DPS in terms of

collinear dPDFs and of solutions to it proposed in [195], [197], [199], [200].

a) b)
c)

Figure 2.7: Schematic representation of different contributions to DPS. a) “2v2” contribution.
b) “1v2” contribution. c) “1v1” contribution.

Let us start the discussion of flaws in factorization of gPDFs into collinear and transverse pieces

from the results of Diehl et al. [192], [193]. Namely, in [192], [193] Diehl et al. computed the “1v2”

contribution to the distribution function Γ(x1, x2, b) in the limit of small values of |b|. For the

splitting of a mother parton of a type a0 into a pair of partons a1 and a2 it yields

Γ1v2
a1,a2;pt(x1, x2, b) =

1

|b|2
αs
2π2

Pa0→a1a2

(
x1

x1 + x2

)
fa0(x1 + x2)

x1 + x2
, (2.68)

where Pa0→a1a2(x) is a 1→ 2 LO splitting kernel defined in section 2.2, fa0(x) is a standard collinear

PDF of a mother parton a0 and the dependence on factorization scales was not shown for brevity’s

sake. The ∼ 1/|b|2 behaviour of the “1v2” contribution to the distribution Γ(x1, x2, b) leads to

the ultraviolet (UV) divergences in the DPS cross section. By substituting Eq. 2.68 into Eq. 2.67

one can see that the integral
∫
d2b Γ(x1, x2, b) Γ(x̄1, x̄2, b) diverges logarithmically for “1v2” DPS

contributions and quadratically for “1v1” DPS contributions. These UV-divergences indicate the

failure of the DPS framework described in section 2.4. Their origin becomes clear if one recalls
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the assumptions made to derive the DPS cross section given by Eq. 2.67. Namely, that Eq. 2.67

was derived within the hard scattering approximation which, among other things, implies that

|r | ∼ |r̄ | ∼ Λ� Q, see section 2.4. The transverse distance |b| is defined as a Fourier conjugate

of |r | which means that small values of |b| correspond to big values of |r | and vice versa. The

integration over d2b in Eq. 2.67, or over d2r in Eq. 2.61, is not constrained and runs over all

possible values of |b| and |r |. It means that the integral over small values of |b| leads to large

values of |r | and, at some point, to violation of the condition |r | � Q which was used to derive

Eq. 2.67, see [192], [193]. Moreover, the integration over all possible values of |b| leads to the

overlap between DPS and SPS contributions. The problem of double counting between DPS and

SPS was discussed within different frameworks in [195], [197], [199], [200]. A similar problem for

the multijet production was pointed out in [201].

In order to explain the double counting between DPS and SPS processes let us consider two cut

diagrams in Fig. 2.8. The cut diagram in Fig. 2.8 a) corresponds to the “1v1” DPD contribution

involving four partons which were “pulled out” of two gPDFs which is schematically represented by

rectangles around upper and lower blobs in Fig. 2.8 a). The cut diagram in Fig. 2.8 b) corresponds

to the one-loop SPS process where four quarks in the loop emerge due to the splitting of two initial

state gluons into two quark-antiquark pairs. The cross section for the “1v1” DPS contribution in

Fig. 2.8 a) is derived in the hard scattering approximation which implies that four-momenta of

quarks are restricted to the kinematic domain where the hard scattering approximation is valid, see

section 2.4. However, in order to compute the one-loop SPS contribution shown in Fig. 2.8, one has

to integrate over all values of loop momenta which also include a domain of the DPS contribution

which, in turn, leads to the double counting between processes shown in Fig. 2.8 a) and b).

The same problem arises for “1v2” DPS contributions. In order to illustrate it consider cut

diagrams shown in Fig. 2.9. The cut diagram in Fig. 2.9 a) stands for the “1v2” DPS contribution.

In this case, the “1v2” splitting is included into gPDF Γ(x1, x2, b) which is schematically represented

by the rectangle around the upper blob in Fig. 2.9 a). In the case of so called twist-four contribution

shown in Fig. 2.9 b) the 1 → 2 splitting is not included into the parton distribution function of

the upper blob and, therefore, the gluon in Fig. 2.9 b) emerges from a single parton distribution

function. As it was pointed out in [200], both graphs correspond to the different approximations

which are valid for the different values of transverse momenta of partons q i produced due to the

1→ 2 splitting. The graph in Fig. 2.9 a) correspond to the small values of q i which implies that

both partons are almost collinear. On the contrary, the graph shown in Fig. 2.9 b) corresponds

to the large values of q i. The cross section corresponding to the Fig. 2.9 a), therefore, does not

depend on two-parton distribution functions but on twist-four distributions which correspond to

the power suppressed corrections in factorization theorems, Eq. 1.33, Eq. 1.34. More precisely, the

hadronic tensor Wµν given by Eq. 1.28, can be expressed as a Fourier transform of a commutator

of two quark currents as

Wµν =
1

4π

∫
d4ξ eiqξ 〈P | [Jµ(ξ), Jν(0)] |P 〉, (2.69)

where |P 〉 is a hadron ground state and q2 is a virtuality of a photon exchanged in the DIS process,

see [44]. The commutator in Eq. 2.69 can be expanded using so called operator product expansion
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(OPE) method. This expansion involves operators of different dimensionality each contributing as(
1

Q2

)t
, (2.70)

where Q2 ≡ −q2 and t is so called twist of the operator which is defined as t = d− s, where d is a

dimensionality of a given operator and s is a value of spin it corresponds to. Operators characterized

by different values of t in the OPE of Eq. 2.69 being “sandwiched” between 〈P | and |P 〉 give rise to

different contributions to Wµν . The discussion of the OPE method and its application to calculation

of the hadronic tensor Wµν is beyond the scope of this thesis and can be found in Chapter 18 of [5]

and in [44]. Here we just note that the twist-two operators give rise to the “standard” single PDFs

and that contributions from the twist-four operators is suppressed as 1/Q4. Therefore, the problem

of double counting between “1v2” DPS contribution and twist-four contribution arises only if one

goes beyond the leading log approximation of QCD [200].

p

p̄

p

p̄

a)

p

p̄

p

p̄

b)

Figure 2.8: DPS and SPS “1v1” contributions. The dashed line denotes the final-state cut. a)
“1v1” DPS contribution. Here the “box” represent double parton distributions. b) one-loop SPS
contribution.

The aforementioned problems of the double counting between DPS and SPS contributions as

well as the related problems of UV-singularities at low transverse distances obviously require a

solution which would allow a consistent treatment of DPS in all orders of perturbation theory.

Several different solutions exist in the literature. One of the first solutions was proposed by Blok

et al. [195] and by Ryskin and Snigirev [197], [198]. The study in these papers was performed for

TMD gPDFs Γ(x1, x2, k1, k2, r). A starting point of the approach proposed in [195] was to split

the distribution function Γ(x1, x2, k1, k2, r) defined by Eq. 2.34 into “intrinsic” and “perturbative”

parts as

Γ(x1, x2, k1, k2, r) = Γ2v2(x1, x2, k1, k2, r) + Γ1v2(x1, x2, k i, k2, r), (2.71)

where Γ2v2 is the “intrinsic” part which is in charge for “2v2” DPS contribution and Γ1v2 is

the “perturbative” part which is in charge for “1v2” DPS contribution. The intrinsic part obeys
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homogeneous double DGLAP evolution equations for TMD gPDFs:

Γ2v2
j1,j2(x1, x2, k1, k2, r) = Sj1(k2

1,Q
2
min)Sj2(k2

2,Q
2
min) Γ2v2

j1,j2(x1, x2,Q0,Q0, r) +

+
∑
j′1

k2
1∫

Q2
min

d2k

k2

αs(k
2)

2π
Sj1(k2

1, k
2)

∫
dz

z
Pj1→j′1(z) Γ2v2

j′1,j2

(x1

z
, x2, k , k2, r

)
+

+
∑
j′2

k2
2∫

Q2
min

d2k

k2

αs(k
2)

2π
Sj2(k2

2, k
2)

∫
dz

z
Pj2→j′2(z) Γ2v2

j1,j′2

(
x1,

x2

z
, k1, k , r

)
(2.72)

where Pji→j′i(z) are LO DGLAP splitting functions as in Eq. 1.77 - 1.80 without terms proportional

to the δ-function. The functions Sji are Sudakov form factors defined by Eq. 2.35 and Eq. 2.36.

The perturbative part Γ1v2(x1, x2, k1, k2, r) is constructed as a convolution of single collinear PDFs

fi(x,Q
2) and distribution functions Dij(x,Qres, Qvir) which give the probability to find a parton i at

the resolution scale Qres inside of a parton j with a virtuality scale Qvir < Qres. The corresponding

expression reads

Γ1v2
j1,j2(x1, x2, k1, k2, r) =

∑
j′1,j
′
2,j
′
3

min(k2
1,k

2
2)∫

Q2
min

d2k

k2

αs(k
2)

2π

dy

y2
Dj′3

(y, k)×

×
∫

dz

z(1− z) Pj′3→j′1j′2(z)Dj1
j′1

(
x1

zy
, k1, k

)
Dj2
j′2

(
x2

(1− z)y , k2, k

)
. (2.73)

The lower integration boundary in Eq. 2.72 and Eq. 2.73 for the integration over d2k starts from

Q2
min = max(Q2

0, r
2) where Q0 is a starting evolution scale.
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Figure 2.9: “1v2” DPS contributions and twist-four SPS contribution. The dashed line denotes the
final-state cut. a) DPS “1v2” contribution. The “box” here represent double parton distributions.
b) Twist-four SPS contribution.

After evaluating “intrinsic” and “perturbative” parts of Γ(x1, x2, k1, k2, r) according to Eq. 2.72

and Eq. 2.73 one can substitute them into Eq. 2.60. The resulting combinations of “intrinsic”

and “perturbative” pieces resulting from the product Γ(x1, x2, k1, k2, r) Γ(x̄1, x̄2, k̄1, k̄2,−r) give

rise to “1v1”, “1v2” and “2v2” DPS contributions. As it was argued in [195], the choice of the

lower integration boundary Q2
min = max(Q2

0, r
2) in Eq. 2.72 leads to an additional logarithmic
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|r |-dependence of Γ2v2
j1,j2

(x1, x2, k1, k2, r) if r2 > Q2
0. Since the lower boundary for the integration

over d2k in Eq. 2.73 is the same, the “perturbative” distribution Γ1v2
j1,j2

(x1, x2, k1, k2, r) will depend

on |r | only logarithmically.

After developing the aforementioned formalism, Blok et al. studied how the evolution effects

impact the value of the effective cross section σeff [196], [158]. In this study the additional logarithmic

dependence of Γ1v2(x1, x2, k1, k2, r) and Γ2v2(x1, x2, k1, k2, r) due to the integration boundary

Q2
min = max(Q2

0, r
2) was neglected. Therefore, Γ1v2(x1, x2, k1, k1, r) ≈ Γ1v2(x1, x2, k1, k2). This

approximation, however, does not solve a problem of the UV-divergences in the integral over d2r

at large values of r , see Eq. 2.60. This problem was solved by postulating r2-dependence of

Γ2v2(x1, x2, k1, k2, r) to be described by the two gluon form factor

F2g(r
2) =

(
1 +
|r |2
m2
g

)−2

, (2.74)

where parameter m2
g ≈ 1.1 GeV2 was extracted from the FNAL and HERA J/ψ photoproduc-

tion data [203]. The usage of F2g(r
2) in the modelling of two-parton distribution functions

Γ1v1
j1,j2

(x1, x2, k1, k2, r) and Γ2v2(x1, x2, k1, k2, r) in fact means introduction of the damping func-

tions into DPS cross section which makes integration over d2r in Eq. 2.60 finite. The problem

of double counting between “1v2” and twist-four contributions was not discussed in [194], [196].

Finally, it was argued that “1v1” contribution has to be suppressed for the DPS production of two

pairs of back-to-back di-jets and, therefore, “1v1” contribution was discarded.

A similar study was performed by Ryskin and Snigirev in [197], [198] where, unlike in [196], the

“1v1” contribution was taken into account. Since, up to logarithmic corrections, the “perturbative”

piece Γ1v1
j1,j2

(x1, x2, k1, k2) does not depend on r2, the “1v1” DPS correction will diverge quadratically

at large values of |r |. This divergence was regularized by imposing an upper integration cut off

min(q2
1, q

2
2) on the d2r integral.

The connection between the aforementioned UV-divergences and the factorized formula for DPS

cross section given by Eq. 2.61 and Eq. 2.63 was studied by Manohar and Waalewijn in [199] by

means of the renormalization of the field operators which give rise to different DPS contributions.

Namely, it was demonstrated that there is no concept of gPDFs associated with an individual

hadron since, unlike the SPS case, the filed operators which give rise to gPDFs involve both hadrons

at once as schematically shown in Fig. 2.10 b) and c). In particular, it implies that[∫
d2b ΓhA(b) ΓhB (b)

]
6=
∫
d2b [ΓhA(b)] [ΓhB (b)] , (2.75)

where [. . .] means UV-renormalization of the field operators which correspond to gPDFs ΓhA(b)

and ΓhB(b) of hadrons hA and hB respectively. Moreover, in Ref. [199] it was shown that the

work with the renormalized product of filed operators
[∫
d2b ΓhA(b) ΓhB (b)

]
instead of products of

renormalized operators
∫
d2b [ΓhA(b)] [ΓhB (b)] allows to avoid UV-divergences and double counting

between DPS and SPS contributions. However, working within the framework of Manohar and

Waalewijn one cannot retain the concept of gPDFs associated with individual hadrons12. In

12A similar observation was made in the paper of Blok et al. [158]. Namely, it was stated that “It is important to
stress that in the MPI physics there is no factorization in the usual sense of the word.”.
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2018 Diehl, Gaunt and Schönwald proposed their solution to the problem of double counting and

UV-singularities which allows to treat DPS in all orders in perturbation theory consistently, without

loosing a concept of gPDFs defined for individual hadrons [200]. The method developed in [200] is

based upon classification of space phase regions where one-loop SPS and twist-four contributions

overlap with “1v1” and “1v2” DPS contributions, correspondingly. The double counted contributions

are then subtracted by adding corresponding subtraction terms to the sum of the SPS and DPS

cross sections. The formalism developed in [200] applies to the TMD gPDFs Γ(x1, x2, k1, k2, r) as

well as to the collinear gPDFs Γ(x1, x2, r). However, since in this thesis we consider only collinear

gPDFs, we will briefly sketch the results of [200] using collinear gPDFs as an example.

Let us consider first the “1v1” DPS contribution. In this case the subtraction term σ1v1,pt used

to avoid the double counting between “1v1” DPS contribution and one-loop SPS contribution is

given by

dσ1v1,pt∏2
i=1 dxi dx̄i

=
∑

a1,a2,b1,b2

σ̂a1,a2 σ̂b1,b2

∫
d2b Φ2 (|b|ν) Γ1v2

a1,a2;pt(xi, b) Γ1v2
b1,b2;pt(x̄i, b), (2.76)

where Γ1v2,pt is a short-distance approximation of the splitting part of gPDFs Γ(x1, x2, b) which

can be computed by perturbative means, see Eq. 2.68. The cutoff function Φ(u) is chosen such

that Φ(u)→ 1 if u� 1 and such that Φ(u) goes to zero at small values of u.13 The parameter ν

in Eq. 2.76 has a dimension of energy and plays the role of the cutoff scale. The short-distance

approximation functions were evaluated in [200] by means of dimensional regularization. Their

exact form depends on a number of dimensions. For example, in D = 2 dimensions Γ1v2,pt(xi, b) is

proportional to ∼ 1/|b| which allows to write integration over d2b in Eq. 2.76 as∫
d2b

|b|4 Φ2 (|b|ν) = ν2

∫
d2u

|u |4 Φ2 (|u |) . (2.77)

We see that σ1v1,pt scales quadratically with ν. The complete contribution to the total cross section

(DPS + SPS) from the graphs in Fig. 2.8 is given by

σSPS − σ1v1,pt + σDPS
1v1 . (2.78)

The cutoff scale ν is chosen to be of the order of the factorization scale Q which implies |b| = 1/Q.

Then, for large values of Q and correspondingly for the small values of |b|, one has σ1v1,pt ≈ σDPS
1v1

which means that at small transverse distances only the σSPS contribution is present. In this

case, the dependence on ν cancels between both contributions. And vice versa at large transverse

distances |b| � 1/Q we have σSPS ≈ σ1v1,pt, so only σDPS
1v1 contribution is present. The cutoff

dependence does not play a role in this region of the phase space since Φ(u)→ 1 at large values of u.

Similar solution was found for the double counting between the twist-four and “1v2” contributions

13More precisely, Φ(u) should reach to zero at small values of u but remain integrable. Therefore, if u → 0 the
behaviour should be Φ(u) ∼ O(u1+δ) with some some δ > 0, see [200].
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Figure 2.10: Schematic representation of SPS and DPS hadronic operators. a) SPS hadronic
operators. b) DPS 1v2 hadronic operators. c) DPS 2v2 hadronic operators.

shown in Fig. 2.9. The corresponding subtraction term in this case is

dσ1v2,pt∏2
i=1 dxi dx̄i

=
∑

a1,a2,b1,b2

σ̂a1,a2 σ̂b1,b2 Ga1,a2(x1, x2, x2, x1)× (2.79)

×
∫
dD−2b Φ2 (|b|ν) Γ1v2

b1,b2;pt(x̄i, b), (2.80)

where Ga1,a2(x1, x2, x2, x1) is a twist-four distribution and D is a dimension of the integration space.

In order to find the ν-scaling of Eq. 2.80 one has to use the technique of integration in 2 − 2ε

dimensions. The details can be found in the original publication [200]. The important result is that a

combination of twist-four contribution and the subtraction term σtw4−σ1v2,pt scales like ∼ log(Q/ν).

The “1v2” DPS contribution, in its turn, scales like log(ν/Λ). In the combined expression

σtw4 − σ1v2,pt + σDPS
1v2 , (2.81)

the ν-dependence cancels between ∼ log(Q/ν) and log(ν/Λ) providing log(ν/Λ) factor in Eq. 2.81.

It is also important to notice that with the scale choice ν ∼ Q the large part of the logarithm is

contained only in σDPS
1v2 contribution.

The complete expression for the total cross section (DPS + SPS), therefore, reads

σDPS+SPS
tot = σSPS − σ1v1,pt + σDPS

1v1 + σtw4 − σ1v2,pt + σDPS
1v2 . (2.82)

The detailed comparison between the approach of Diehl, Gaunt and Schönwald and the approaches

of [195], [197], [198] and [199] was given in [200]. In the rest of this section, we shall briefly sketch

some key-points we will need in the other parts of this thesis. Therefore, we will not discuss the

comparison between the approach of Diehl, Gaunt and Schönwald and the approach of Manohar

and Waalewijn since this discussion would be dedicated to the formal aspects of the DPS theory

but not to its phenomenological applications. Instead, we will concentrate on the aspects of the

formalism of [200] essential for the DPS phenomenology and their connection to the aforementioned

publications of Blok et al. [195] and of Ryskin and Snigirev [197], [198].

First of all, the scale choice ν ∼ Q implies that the term σtw4 − σ1v2,pt does not acquire a

large log(Q/ν). Therefore, within the leading log approximation one can drop it. The twist-four

contributions were not considered in the paper of Blok et al. and in the paper of Ryskin and Snigirev

which then are also valid only within the leading logarithmic approximation14. Therefore, at this

14It was explicitly stated in the paper of Blok et al. [195].
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accuracy level one can write

σDPS+SPS
tot = σSPS − σ1v1,pt + σDPS

1v1 + σDPS
1v2 . (2.83)

The next important point is a question of modelling of the two-parton distribution functions. In

the papers of Blok et al. [195], [158] and papers of Ryskin and Snigirev [197], [198] the separation

into “intrinsic” “2v2” and “perturbative” “1v1” parts was used. As we have noticed before, the

approach of Diehl et al., unlike the approaches of Blok et al. [196] and of Ryskin and Snigirev [197],

[198], does not require such separation of gPDFs. However, due to the absence of gPDFs extracted

out of the experimental data, the phenomenological modelling of gPDFs with splitting into “2v2”

and “1v2” pieces is unavoidable. Namely, in Ref. [200] Diehl et al., in order to provide numerical

illustrations to their approach, used

Γ(x1, x2, b, Q
2
1, Q

2
2) = Γ2v2(x1, x2, b, Q

2
1, Q

2
2) + Γ1v2(x1, x2, b, Q

2
1, Q

2
2), (2.84)

where Γ2v2 and Γ1v2 follow homogeneous dDGLAP evolution equations separately. The detailed

analysis performed in [200] demonstrated that at the leading log accuracy level the treatment of

“1v2” DPS contribution within the approach of Diehl et al. is consistent within the approach of

Blok et al. and of Ryskin and Snigirev. The treatment of “1v1” DPS contributions, however, leads

to different results. Namely, it was shown that the evolution of gPDFs within the framework of

[200] may enhance the term σDPS
1v1 − σ1v1,pt which would lead to the disagreement with the approach

of Blok et al. where the “1v1” DPS contribution was neglected. If such enhancement does not

take place, the approach of Diehl et al. agrees with the approach of Blok et al. at the leading log

accuracy level. Additionally, it was shown that the the upper cutoff for the d2k integration for the

“1v1” terms in the approach of Ryskin and Snigirev does not solve the double counting problem

between the “1v2” DPS contribution and the one-loop SPS contribution.

At the moment there is no detailed phenomenological studies within the framework of [200].

However, in Ref. [200] Diehl et al. demonstrated how their method works using regularized double

parton luminosities (LReg
DPS) defined as

La1a2b1b2(x1, x2, x̄1, x̄2, Q
2
1, Q

2
2, ν) =

∫
d2b Φ2 (|b|ν) Γa1a2(x1, x2, b, Q

2
1, Q

2
2) Γb1b2(x̄1, x̄2, b, Q

2
1, Q

2
2), (2.85)

where Q1, Q2 are factorization scales and Φ is a certain cutoff function with properties as discussed

above. In their study Diehl et al. used the phenomenological ansatz given by Eq. 2.84 with equal

factorization scales Q2
1 = Q2

2 = Q2
2. The “intrinsic” “2v2” part of Γ(x1, x2, b, Q

2) at the starting

value of the evolution scale Q0 was chosen to be equal to

Γ2v2
a1a2,(x1, x2, b, Q

2
0) =

1

4πha1a2

exp

[ −b2

4ha1a2

]
fa1(x1, Q

2
0)fa2(x2, Q

2
0)× (2.86)

× (1− x1 − x2)2 (1− x1)−2 (1− x2)−2, (2.87)

where fa(x,Q
2) are standard collinear MSTW2008 LO PDFs [298] and the phase space factor

(1− x1 − x2)2 (1− x1)−2 (1− x2)−2 (2.88)
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uū

L
/
G
eV

2

Y

1v1×1
4 ...4

2v1

1v1

2v2

105

106

107

108

109

1010

0 0.5 1 1.5 2 2.5 3 3.5 4

a)

108

109

1010

1011

1012

1013

0 0.5 1 1.5 2 2.5 3 3.5 4

gg

L
/
G
eV

2

Y

1v1×1
4 ...4

2v1

1v1

2v2

108

109

1010

1011

1012

1013

0 0.5 1 1.5 2 2.5 3 3.5 4

108

109

1010

1011

1012

1013

0 0.5 1 1.5 2 2.5 3 3.5 4

gg

L
/
G
eV

2

Y

1v1×1
4 ...4

2v1

1v1

2v2

108

109

1010

1011

1012

1013

0 0.5 1 1.5 2 2.5 3 3.5 4

b)

Figure 2.11: Double parton scattering luminosities La1a2b1b2 for the production of two systems with
Q1 = Q2 = 80 GeV at

√
S = 14 TeV, one with rapidity Y and the other with rapidity −Y . The

parton combinations a1a2b1b2 are uūūu+ ūuuū (a) and gggg (b). The plot is taken from [200].

ensures a smooth damping of Γ2v2
a1a2

(x1, x2, b, Q
2) at the border of the unphysical region where

x1 + x2 > 1 [173]. The parameter ha1a2 effectively provides the maximal distance between partons

in the transverse plane. In the absence of partonic correlations it should be of the order of the

proton size. However, the experimental studies of DPS suggest a value at least two times smaller,

see Fig. 2.3. Moreover, its value can be different for various parton species and even demonstrate

the x-dependence, see [149] - [160]. In the study of Diehl et al. ha1a2 was chosen to be of the form

ha1a2 = ha1 + ha2 with hg = 2.33 GeV−2 and hq = hq̄ = 3.53 GeV−2 which was inspired by the

model of partonic correlations proposed in [159]. The initial condition for the “splitting” “1v2” part

of Γ(x1, x2, b, Q
2) was taken in the form

Γ1v2
a1a2

(x1, x2, b, Q
2
0b) =

1

πb2 exp

[ −b2

4ha1a2

]
fa0(x1 + x2, Q

2
0b)

x1 + x2
× (2.89)

× αs(Q
2
0b)

2π
Pa0→a1a2

(
x1

x1 + x2

)
, (2.90)

where Q2
0b is a starting evolution scale for Γ1v2

a1a2
.

In Fig. 2.11 we show one of the results from [200] where the regularized double parton luminosities

for productions of two well-separated in rapidity systems were studied. The phenomenological

ansatz in Eq. 2.84 allows to separate “2v2”, “1v2” and “1v1” DPS luminosities which are plotted

in Fig. 2.11 for two particular sets of parton species: uūūu + ūuuū in Fig. 2.11 a), and gggg in

Fig. 2.11 b). The dashed line in Fig. 2.11 corresponds to the “2v2” DPS luminosity evolved to

Q1 = Q2 = 80 GeV and the solid lines in Fig. 2.11 correspond to “1v2” and “1v1” DPS luminosities

evolved to Q1 = Q2 = 80 GeV. The red and blue bands correspond to the variation of the cutoff

parameter ν by a factor of 2 up and down. As we have discussed before, the “1v1” DPS luminosity,
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unlike “1v2” DPS luminosity, depends on the value of the cutoff parameter ν quadratically. This

dependence should lead to the wide bands due to the variation of µ. On the other hand, as it was

argued in [200], the dependence on the cutoff parameter ν can be affected by the evolution effects.

In order to estimate how the evolution effects impact this dependence in Fig. 2.11 Diehl et al.

plotted a yellow band which corresponds to the variation of “1v1” DPS luminosity by the factor of

4 up and down. Therefore, in the case when evolution effects do not affect “1v1” DPS luminosity,

the blue and yellow bands should coincide. By comparing the blue and yellow bands for “1v1” DPS

contributions we see that dDGLAP evolution effects become important for “1v1” DPS luminosities

at large values of rapidity separation. Another important effect shown in Fig. 2.11 is that “1v2”

and “1v1” DPS luminosities tend to decrease with the increase of rapidity separation. Namely, we

see that for the luminosities shown in Fig. 2.11 a) the “2v2” DPS luminosity dominates over “1v2”

and “1v1” DPD luminosities at large values of rapidity separation. In Fig. 2.11 b) we also see that

the difference between “2v2” DPS luminosity and “1v1” DPS luminosity becomes smaller towards

to the large values of rapidity separation.

The approach of Diehl et al. opens a possibility to study DPS processes in a systematic way

in all orders in perturbation theory. Recently first results on NLO DPS were obtained [177], [210].

However, its consistent implementation into Monte Carlo event generators and, therefore, its usage

for realistic phenomenological analyses, still possesses a lot of challenging problems, though some

progress towards to this goal was recently made [211]. We will come back to the discussion of some

of these issues in Chapter 4 of this thesis.

2.6 General formalism of the DPS in proton-nucleus collisions

As it was mentioned in section 2.1 the first discussion of DPS in proton-nucleus collisions was given

in one of the very first papers on DPS by Goebel et al. [114]. The authors of [114] predicted that

in pA collisions, apart from the “standard” DPS contribution involving one incident proton and

one nucleon, as shown in Fig. 2.12 a), a new DPS contribution involving one incident proton and

two different nucleons is possible, see Fig. 2.12 b). Moreover, Goebel et al. have argued that both

contributions should scale differently with a total number of nucleons A and that “... using targets

with multiple nuclear composition, one can unambiguously separate two production mechanisms

[DPS and SPS] experimentally.”. However, for a long period of time the problem of DPS in pA

collisions was staying outside of the research interest of the theoretical physicists. The study of the

DPS phenomena in pA collisions was resumed in 2001 when Strikman and Treleani published the

paper where the analytical expressions for a total DPS cross section in pA collisions was given for

the first time and first quantitative predictions on scaling of two different DPS contributions were

made [213]. As we have discussed in section 2.1, various studies of DPS performed at pp and pp̄

colliders [133] - [134] suggest a presence of partonic correlations which leads to small values of the

effective interaction area σeff . Unfortunately, a nature of correlations contributing to this effects is

still debatable. One of the main problems is our disability to disentangle different sources of parton

correlations in pp (pp̄) collisions alone. In order to circumvent this issue, Strikman and Treleani

proposed to study DPS processes in pA collisions [213] which would allow to separate transverse

and longitudinal parton correlations according to the different A-dependence of corresponding

contributions to the total DPS cross section. This idea got further developed in [215], [216] and
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found some phenomenological applications in a series of papers [214] - [225].

a) b)

c) d)

e) f)

Figure 2.12: Schematic representation of different contributions to DPS in pA collisions assuming
no cross talks between different nucleons.

However, in general, total DPS cross section in pA collisions is more complicated as discussed in

[213] due to the various “splitting” contributions, see Fig. 2.12 c), d), e), f). In this section we will

briefly sketch the results of [216] which correspond to current state-of-the-art of the description of

DPS phenomena in pA collision. Let us start the discussion with the definition of the generalized

nuclear parton distribution functions (gNPDFs)

ΓA(x1, x2, δδδ) = Γ1v2,1N
A (x1, x2, δδδ) + Γ2v2,1N

A (x1, x2, δδδ) + Γ2N
A (x1, x2, δδδ) , (2.91)

where the terms Γ1v2,1N
A (x1, x2, δδδ) and Γ2v2,1N

A (x1, x2, δδδ) correspond to the case where two partons

with Bjorken variables x1 and x2 belong to the same nucleon. The first two terms on the RHS of

Eq. 2.91 can be seen as a generalization of the ansatz of Blok et al. [195] to the case of gNPDFs.

The gNPDF Γ2N
A (x1, x2, δδδ) has no analogue among generalized proton PDFs and correspond to the

case when two partons with Bjorken variables x1 and x2 belong to two different nucleons. The

parameter δδδ is a momentum transfer between initial and final state in the cut diagram in Fig. 2.13.

It is the same quantity as the momentum transfer rrr between initial and final state in the cut diagram

in Fig. 2.5, where we were using cut diagrams to write down 2-parton correlation function, see

section 2.3. However, in this section we often take the Fourier transform of ΓA(x1, x2, δδδ). Therefore,

in order not to confuse a momentum transfer rrr with the radius vector in position space, we change
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the notation and use δδδ instead of rrr.

Since DPS cross sections includes a product of two gNPDFs, the ansatz in Eq. 2.91 give rise

to six different DPS contributions shown in Fig. 2.12. Let us start our discussion with the DPS

contributions involving only one nucleon as shown in 2.12 a), c) d) and e). In order to proceed

further with a description of these processes one has to express Γ1N
A in terms of gPDFs of a single

nucleon. In this case the main formula reads

Γ1N
A (x1, x2, δδδ) =

∫
dα

α
d2p

1

α2

[
Γ1v2
N

(x1

α
,
x2

α
,δδδ
)

+ Γ2v2
N

(x1

α
,
x2

α
,δδδ
)]

ρNA (α,p), (2.92)

where ρNA (α,p) is the light-cone nucleon density of a nucleus introduced in [217] and defined as

ρNA (α,p) =

∫ A∏
i=1

dαi
αi

d2pi δ

(
1−

∑
αi

A

)
δ

(
A∑
i=1

pi

)
A∑
i=1

αi δ(α− αi) δ2(p − pi)

× |ψ (α1, ..., αA,p1, ...,pA)|2 , (2.93)

where ψ is a wave function of a nucleus with A nucleons each carrying transverse momentum pi.

The quantities αi in Eq. 2.93 are defined as

αi = A
p+
i

p+
A

= A

√
m2
i + p2

i + piz√
m2

A + p2
A + pAz

, (2.94)

where p+
i and p+

A are “plus” components of the light-cone momenta of the i’th nucleon and the

nucleus A, correspondingly15. The definition of αi implies that αi/A is equal to the light-cone

fraction of nucleus momentum carried by the i’th nucleon and that αi ∈ [0,A]. It also implies that
A∑
i=1

αi = A. The light-cone nucleon density ρNA (α,p) obeys two important sum rules:

A∫
0

ρNA (α,p)
dα

α
d2p = A, (2.95)

A∫
0

αρNA (α,p)
dα

α
d2p = A, (2.96)

where Eq. 2.95 is called baryon number sum rule and Eq. 2.96 implies conservation of the “plus”

components of the light-cone momenta, see Chapter 2.4.2 of [217]. Taking the difference between

Eq. 2.96 and Eq. 2.95 we obtain an important expression

A∫
0

(α− 1) ρNA (α,p)
dα

α
d2p = 0. (2.97)

In order to simplify Eq. 2.92 one has to make certain assumptions about α-dependence of Γ1v2
N

and Γ2v2
N . As a first approximation one can assume that all nucleons are carrying the same amount

of longitudinal light-cone momentum of a nucleus which implies p+
i = p+

A/A or αi = 1 ∀i. Obviously,

the motion of nucleons inside a nucleus implies that values of αi are distributed around unity with a

15For the definition of the light-cone variables see Appendix C.
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certain dispersion. However, if we assume that dispersion effects due to the motion of nucleons are

small, then Γ1v2
N and Γ2v2

N are peaked around value α = 1 and hence we can expand the integrand in

Eq. 2.92 in powers of (α− 1). In order to do that we substitute α = 1 + (α− 1) in Eq. 2.92 which

yields

Γ1N
A (x1, x2, δδδ) =

∫
dα

α
d2p

1

(1 + (α− 1))
2

[
ΓN

(
x1

1 + (α− 1)
,

x2

1 + (α− 1)
, δδδ

)]
ρNA (α,p), (2.98)

where we have denoted

ΓN

(x1

α
,
x2

α
,δδδ
)

= Γ1v2
N

(x1

α
,
x2

α
,δδδ
)

+ Γ2v2
N

(x1

α
,
x2

α
,δδδ
)
. (2.99)

Now we can expand Γ1v2
N and Γ2v2

N in powers of (α− 1). As it was argued in the paper of Blok et

al. [216] the factor 1/α2 in Eq. 2.92 ensures invariance of the quantity ΓN (x1/α, x2/α)/α2 under

boosts in the longitudinal direction and, therefore, has to be expanded together with ΓN . Expanding

ΓN (x1/α, x2/α)/α2 in powers of (α− 1) we write Eq. 2.98 as

Γ1N
A (x1, x2, δδδ) =

∫
dα

α
d2p ΓN (x1, x2, δδδ) ρ

N
A (α,p) +

+ O
(∫

dα

α
d2p (1− α) ρNA (α,p)

)
+

+ O
(∫

dα

α
d2p (1− α)2 ρNA (α,p)

)
+ higher order terms. (2.100)

By applying Eq. 2.97 to Eq. 2.100 we see that up to the terms of the order of (α− 1)2

Γ1N
A (x1, x2, δδδ) ≈ A ΓN (x1, x2, δδδ)

(
1 +O

(∫
dα

α
d2p (1− α)2ρNA (α,p)

))
, (2.101)

where we have used Eq. 2.95 to write∫
dα

α
d2p ΓN (x1, x2, δδδ) ρ

N
A (α,p) =

= ΓN (x1, x2, δδδ)

∫
dα

α
d2p ρNA (α,p) = A ΓN (x1, x2, δδδ) . (2.102)

Therefore, for the processes shown in Fig. 2.12 a), c), d) and e) the gNPDF Γ1N
A (x1, x2, δδδ), up to

the terms of the order O(α− 1)2, is given by A ΓN (x1, x2, δδδ) which allows to write the total DPS

cross section in pA collisions for the in Fig. 2.12 a), c), d) and e) as

σpA
DPS = A

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi
d2δδδ

(2π)2
Γa1,a2/p(x1, x2, δδδ) Γb1,b2/N (x3, x4,−δδδ)×

×σ̂a1 b1→A σ̂a2 b2→B. (2.103)

We define the Fourier transform of Γ(x1, x2, δδδ) as

Γ(x1, x2, b) =

∫
d2b e−ibδδδ Γ(x1, x2, δδδ). (2.104)
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Now, using Eq. 2.104, we can write Eq. 2.103 as

σpA
DPS = A

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi d
2b Γa1,a2/p(x1, x2, b) Γb1,b2/N (x3, x4, b)×

×σ̂a1 b1→A σ̂a2 b2→B. (2.105)

which, assuming that one can factorize δδδ-dependence as Γb1,b2/N (x3, x4, b) ≈ Db1,b2/N (x3, x4)F (b)

and that Db1,b2/N (x3, x4) ≈ Db1,b2/p(x3, x4), yields

σpA
DPS ≈ Aσpp

DPS, (2.106)

where σpp
DPS is a DPS cross section for pp collisions which includes “2v2”, “1v2” and “1v1” DPS

contributions shown in Fig. 2.7.

A A
N

N

N

N

x1 x1

x2 x2

α1,p1

α2,p2

α1,p1 + δ

α2,p2 − δ

Figure 2.13: Schematic representation of the Γ2N
A contribution to the gNPDFs. Here, two partons

are drawn from two different nucleons with light-cone momentum fractions α1, α2 and transverse
momenta p1, p2.

Now let us sketch the derivation of the total cross section for the processes given in Fig. 2.12 b)

and f) as it was done in [216]. The corresponding gNPDF can be expressed in terms of the nuclear



2.6. GENERAL FORMALISM OF THE DPS IN PROTON-NUCLEUS COLLISIONS 59

light cone wave function ψA of the A-nucleon system

Γ2N
A (x1, x2, δδδ) = A(A− 1)

∫ A∏
i=1

dαi
αi

d2pi δ

(∑
i

αi −A

)
δ2

(∑
i

pi

)
×

× ψ∗A (α1, α2, ...,p1,p2, ...)ψA (α1, α2, ...,p1 + δδδ,p2 − δδδ, ...)×
× fN (x1/α1, δδδ) fN (x2/α2,−δδδ) , (2.107)

where A(A − 1) is a number of different nucleon permutations, index i = 1, 2 labels two active

nucleons, δδδ is a momentum transfer between them and fN are generalized nucleon single parton

distribution functions, see Fig. 2.13. Since the sign of the momentum transfer δδδ is arbitrary, Γ2N

cannot depend on it. Therefore, Γ2N
A (x1, x2, δδδ) = Γ2N

A (x1, x2,−δδδ) which implies

Γ2N
A (x1, x2, δδδ) = Γ2N

A (x1, x2,−δδδ) =

= A(A− 1)

∫ A∏
i=1

dαi
αi

d2pi δ

(∑
i

αi −A

)
δ2

(∑
i

pi

)
×

× ψ∗A (α1, α2, ...,p1,p2, ...)ψA (α1, α2, ...,p1 − δδδ,p2 + δδδ, ...)×
× fN (x1/α1,−δδδ) fN (x2/α2, δδδ) . (2.108)

Because the integration over transverse momenta is symmetric in Eq. 2.108 we can replace pi → −pi.
However, the nucleus wave function ψA should not change if we inverse transverse momenta of all

nucleons, therefore

ψA (α1, α2, ...,−p1 − δδδ,−p2 + δδδ, ...) =

= ψA (α1, α2, ...,−(p1 + δδδ),−(p2 − δδδ), ...) =

= ψA (α1, α2, ...,+(p1 + δδδ),+(p2 − δδδ), ...) , (2.109)

which allows to write Eq. 2.108 as

Γ2N
A (x1, x2,−δδδ) = A(A− 1)

∫ A∏
i=1

dαi
αi

d2pi δ

(∑
i

αi −A

)
δ2

(∑
i

pi

)
×

× ψ∗A (α1, α2, ...,p1,p2, ...)ψA (α1, α2, ...,p1 + δδδ,p2 − δδδ, ...,+)×
× fN (x1/α1,−δδδ) fN (x2/α2, δδδ) . (2.110)

By comparing Eq. 2.107 and Eq. 2.110 we see that condition Γ2N
A (x1, x2, δδδ) = Γ2N

A (x1, x2,−δδδ) is

satisfied if

fN (x1/α1, δδδ) = fN (x1/α1,−δδδ) , (2.111)

fN (x2/α2,−δδδ) = fN (x2/α2, δδδ) , (2.112)
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which implies that fN can depend only on absolute value of δδδ. Therefore, we write Eq. 2.107 as

Γ2N
A (x1, x2, δδδ) = A(A− 1)

∫ A∏
i=1

dαi
αi

d2pi δ

(∑
i

αi −A

)
δ2

(∑
i

pi

)
×

× ψ∗A (α1, α2,p1,p2, ...)ψA (α1, α2,p1 + δδδ,p2 − δδδ, ...)×
× fN (x1/α1, |δδδ|) fN (x2/α2, |δδδ|) . (2.113)

Expanding in powers of (αi − 1) in Eq. 2.107, similarly to the case of Γ1N
A , we obtain

Γ2N
A (x1, x2, δδδ) = A(A− 1) fN (x1, |δδδ|) fN (x2, |δδδ|) F 2N

A (δδδ,−δδδ), (2.114)

where

F 2N
A (δδδ,−δδδ) =

∫ A∏
i=1

dαi
αi

d2pi δ

(∑
i

αi −A

)
δ2

(∑
i

pi

)
ψ∗A (α1, α2,p1,p2, ...)×

× ψA (α1, α2,p1 + δδδ,p2 − δδδ, ...) . (2.115)

In the nucleus rest frame in the non-relativistic limit one can set αi = 1 + pz,i/mN [217] and thus

FNR,2NA (δδδ,−δδδ) =

∫ A∏
i=1

d3pi δ
3

(
A∑
i=1

pi

)
ψ∗A (α1, α2, p1, p2, ...)×

× ψA (α1, α2, p1 + δδδ, p2 − δδδ, ...) , (2.116)

where pi is a three-momentum of the i’th nucleon.

In order to perform further steps we have to specify a form of a nuclear wave function ψA. If we

consider a nucleus as a superposition of independent nucleons, then we can write ψA as a product of

independent nucleon wave functions ψN and neglect the kinematic constraint δ3 (
∑

i pi) which gives

FNR,2NA (δδδ,−δδδ) =

∫ i=A∏
i=1

d3pi ψ
∗
N (p1)ψ∗N (p2)ψ∗N (p3) . . .×

× ψN (p1 + δδδ)ψN (p2 − δδδ)ψN (p3) . . . . (2.117)

Equation 2.117 can be simplified by means of the Fourier transform. We define the Fourier transform

of a single nucleon wave function ψN as

ψN (p) =
1

(2π)3/2

∫
d3r ψN (r) e−ipr. (2.118)

By substituting Eq. 2.118 into Eq. 2.117 we can write for the functions ψN (pi) with i ≥ 3∫
d3pi ψ

∗
N (pi)ψN (pi) =

1

(2π)3

∫
d3pi d

3rid
3r′i ψ

∗
N (ri)ψN (r′i) e

−ip(ri−r′i) =

=

∫
d3ri |ψN (ri)|2 =

1

A

∫
d3ri ρA(ri) = 1, (2.119)
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where ρA(r) = A|ψN (r)|2 is a single nucleon density function normalized such that∫
d3r ρA(r) = A. (2.120)

Therefore, after taking the Fourier transform for all single nucleon wave functions with i ≥ 3, we

are left over with

FNR,2NA (δδδ,−δδδ) =

∫
d3p1 d

3p2 ψ
∗
N (p1)ψ∗N (p2)ψN (p1 + δδδ)ψN (p2 − δδδ) , (2.121)

which can be written as

FNR,2NA (δδδ,−δδδ) =

[
1

A

∫
d3r ρA(r)e−iδδδr

] [
1

A

∫
d3r ρA(r)e+iδδδr

]
=

=

∣∣∣∣ 1

A

∫
d3r ρA(r)e−iδδδr

∣∣∣∣2 ≡ |FA(δδδ)|2 , (2.122)

where FA(δδδ) is the single nucleon form-factor.

Using Eq. 2.122 one can write Eq. 2.114 as

Γ2N
A (x1, x2, δδδ) ≈ A(A− 1) fN (x1, |δδδ|) fN (x2, |δδδ|) |FA(δδδ)|2 . (2.123)

It is handy to express the single nucleon form factor in terms of the nuclear thickness function TA

which is defined as a single nucleon density function ρA (r) integrated over a longitudinal coordinate

TA (s) =

∫
dz ρA (s, z) , (2.124)

which gives

FA(δδδ) =
1

A

∫
d2s TA(s) e−iδδδs , (2.125)

where we used δδδr = δδδs.

Now we can write down corresponding cross sections for processes involving two independent

nucleons. Consider, for example, the process shown in Fig. 2.12 b). The total DPS cross section for

this process is given by the following integral

σpA
DPS =

1

(2π)2

∑
a1,a2,b1,b2

∫ 2∏
i=1

dxi d
2δδδ Γ2v2

a1,a2/p
(x1, x2, δδδ) Γ2N

b1,b2/A
(x3, x4, δδδ)×

× σ̂a1 b1→A σ̂a2 b2→B, (2.126)

or approximately

σpA
DPS ≈ A(A− 1)

(2π)2

∑
a1,a2,b1,b2

∫ 2∏
i=1

dxi d
2δδδ Γ2v2

a1,a2/p
(x1, x2, δδδ)×

× fb1/N (x1, |δδδ|) fb2/N (x2, |δδδ|) |FA(δδδ)|2 σ̂a1 b1→A σ̂a2 b2→B. (2.127)
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In order to perform further steps one has to know the δδδ-dependence of Γ2v2
p and fN . One can

estimate a size of |δδδ| by evaluating |FA(δδδ)|2 for a Gaussian parametrization of a nuclear mater

density which yields

|FA(δδδ)|2 ≈ e− 1
3
δδδ2R2

A , (2.128)

where RA is a radius of a nucleus [216]. It allows to conclude that most of the contribution to a

corresponding total cross section is suppressed for large values of |δδδ| and thus

δδδ2<O(3/R2
A), (2.129)

which means that for large nuclei one can neglect the δδδ-dependence of fN and Γ2v2
p and, therefore,

one can write

Γ2v2
a1,a2/p

(x1, x2, δδδ) ≈ D2v2
a1,a2/p

(x1, x2), (2.130)

Γ2N
A (x1, x2, δδδ) ≈ A(A− 1) fN (x1) fN (x2) |FA(δδδ)|2 . (2.131)

where fN is a nucleon collinear single parton distribution function. One should not confuse the

dPDFs D2v2(x1, x2) in Eq. 2.130 with dPDFs D(x1, x2) in Eq. 2.13 since D2v2(x1, x2) account only

for “2v2” DPS processes as it shown in Fig. 2.7 a) whereas D(x1, x2) account for “2v2” and “1v2”

DPS processes as it is shown in Fig. 2.7 b) and c). The reason for this is a division of dPDFs into

“2v2” “intrinsic” part and into “1v2” “perturbative” part in the approach of Blok et al. as in Eq.

2.84 and Eq. 2.91.

Using Eq. 2.130 and Eq. 2.131 one can write Eq. 2.127 as

σpA
DPS ≈ A(A− 1)

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiD
2v2
a1,a2/p

(x1, x2)fb1/N (x3) fb2/N (x4)×

× σ̂a1 b1→A σ̂a2 b2→B

∫
d2δδδ

(2π)2
|FA(δδδ)|2 . (2.132)

The integral over δδδ yields∫
d2δδδ

(2π)2
|FA(δδδ)|2 =

1

A2

∫
d2δδδ

(2π)2
d2s d2s ′ e−iδδδ(s−s

′) TA(s) TA(s ′) =
1

A2

∫
d2s T2

A(s), (2.133)

which allows to write Eq. 2.132 as

σpA
DPS ≈ (A− 1)

A

∑
a1,a2,b1,b2

∫ 4∏
i=4

dxiD
2v2
a1,a2/p

(x1, x2)fb1/N (x3) fb2/N (x4)×

× σ̂a1 b1→A σ̂a2 b2→B

∫
d2s T2

A(s). (2.134)

Using approximate relation for the radius of the nucleus RA ≈ A1/3 and the constraint for δδδ2 as in

Eq. 2.129 one can find how Eq. 2.134 scales with A. Namely, Eq. 2.129 yields δδδ2<O(3/R2
A) ∼ A−2/3.

If we now approximate FA(δδδ) by the step function with support δδδ2<O(3/R2
A) we can estimate the
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size of the integral
∫

d2δδδ
(2π)2 |FA(δδδ)|2 which yields

∫
d2δδδ

(2π)2
|FA(δδδ)|2 =

∫
d2s T2

A(s) ≈ A4/3. (2.135)

We see that the total cross sections for the DPS process shown in Fig. 2.12 b) scales approximately

as A4/3 contrary to the cross section for the DPS processes shown in Fig. 2.12 a), c) and d) which

scales approximately as A.

The last contribution we have to discuss in shown in Fig. 2.12 f). This process involves “1v2”

splitting which we discussed at the beginning of this section. For the study of the process shown in

Fig. 2.12 f) Blok et al. applied the formalism already developed in [195] to describe “1v2” DPS

contributions in pp collisions. In particular it follows that expression for the process in Fig. 2.12 f)

is given by Eq. 2.134 but with proton dPDF D2v2(x1, x2) replaced by D1v2(x1, x2) which describes

“1v2” splitting. This result follows from the splitting of the proton dPDFs into “intrinsic” part

which is in charge for “2v2” DPS processes and “perturbative” part which is charge for the “1v2”

DPS processes, see Eq. 2.71. In [158] Blok et al using the parametrization of FA(δδδ) as in Eq. 2.74

and the formalism of [195] have demonstrated that the “1v2” DPS contribution in pp collisions is

getting enhanced in comparison to “2v2” DPS contribution. A similar study was performed for

the pA collisions. However, in [216] Blok et al. found that for the large nuclei with A � 1 the

relative weight of the DPS process in Fig. 2.12 f) taken with respect to the DPS processes shown in

Fig. 2.12 b) is smaller as the corresponding relative weight in pp collisions. Namely, the numerical

estimate given in [216] for A� 1 yields(
σpA
f,DPS

σpA
b,DPS

)/(σpp
1v2,DPS

σpp
2v2,DPS

)
= const(A) ∼ 1

5
, (2.136)

where σpp
1v2,DPS and σpp

2v2,DPS are 1v2 and 2v2 DPS contributions in pp collisions, correspondingly.

Now let us summarize most relevant results of [216]:

• The total cross section for the processes shown in Fig. 2.12 a), c), d) and e) is given by

Eq. 2.106.

• The total cross section for the process shown in Fig. 2.12 b) is given by Eq. 2.134.

• The total cross section for the process shown in Fig. 2.12 f) is given by Eq. 2.134 where “2v2”

dPDF is replaced by “1v2” dPDF.

• The total cross section for the process shown in Fig. 2.12 e) is suppressed for the production

of two back-to-back di-jet pairs.

• The relative contribution of the DPS process shown in Fig. 2.12 f) taken with respect to the

contribution from the DPS process shown in Fig. 2.12 b) in pA collisions for heavy nuclei is

about five times smaller as in pp collisions.

We will discuss some phenomenological applications of this formalism in Chapter 5 and Chapter 7.
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Chapter 3

Basic Monte Carlo algorithms

In this chapter we briefly discuss some algorithms essential to write a simple Monte Carlo event

generator. Namely, we discuss the generation of unweighted events and the generation of colour

charges in the leading colour approximation using the LO di-jet production as an example. Later, in

Chapter 4 we will apply the methods discussed in this section to the four-jet LO DPS production.

A pedagogical introduction to the addressed topics can be found, for example, in [74] and [78]-[80].

3.1 Generation of unweighted events

Let us assume that we have a distribution function f(x) which gives a probability to find a certain

quantity in the range between x and x+ ∆x. Additionally, let us assume that we have to generate

events according to f(x). This task can be accomplished in several different ways. One of the

simplest algorithms is a generation of weighted events. The idea is to generate x uniformly in a

given range, say between 0 and 1, and to evaluate f(x) for each value of x. This will provide us a

set of x-values which we denote as {xi} and a set of associated weights {ωi = f(xi)} which we can

use to produce a weighted distribution of “events” {xi}. However, the work with weighted events

may be inconvenient. For example, it can be very inefficient to work with events with small weights

and, more importantly, events coming from a real data samples are always unweighted. One can

circumvent this obstacle by using a reweighting procedure called hit-or-miss algorithm1. It can be

seen as a sequence of the following steps:

1. Generate a set of x-values {xi} according to the uniform probability distribution.

2. For each xi ∈ {xi}, evaluate corresponding weights according to ωi = f(xi), resulting in a set

of weights {ωi}.

3. Find in {ωi} the maximal value ωmax.

4. For each generated xi ∈ {xi} evaluate the ratio ωi/ωmax ≡ f(xi)/fmax and compare it to

a random number generated in the range R ∈ (0, 1). If R < f(xi)/fmax keep the event,

otherwise remove it from the sample {xi}.

After performing this procedure one will get a set of unweighted events {xi} where events which

have higher weights before unweighting will appear more frequently. Therefore, one can build a

1This approach is also sometimes called a rejection sampling or von Neumann rejection algorithm.

65
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frequency distribution for the sample {xi} which will give us a distribution of events according to

the distribution function f(x).

The aforementioned procedure, however, has a potential flaw. Namely, in practice, one usually

determines ωmax approximately at the certain accuracy level. It means that sometimes one can

generate events with weight bigger than ωmax which will imply ω/ωmax > 1. Such events, obviously,

will always satisfy the condition R < ωi/ωmax. After the unweighting procedure all events which

had a weight ω < ωmax have the same weight which is equal to one. However, the events with

ω > ωmax after the unweighting procedure will have the weight bigger than one. Therefore, one

has always make sure that the maximal weight ωmax is determined precise enough to exclude the

influence of the aforementioned effect on the generation procedure.

3.2 Generation of 2→ 2 LO QCD processes

Now let us discuss how the hit-or-miss algorithm can be applied to the generation of the LO 2→ 2

QCD processes. The master formula for the total di-jet cross section is given by

σdi−jet =
∑
a,b,c,d

σa b→c ddi−jet =
∑
a,b,c,d

∫
dxadxbdt̂ fa/hA(xa, Q

2)fb/hB (xb, Q
2)
dσ̂

dt̂
(a b→ c d) , (3.1)

where fa/hA (fb/hB ) is a collinear PDF of a hadron of a type hA (hB) and dσ̂/dt̂ is a partonic cross

section for the process a b→ c d.

As we see, the set of variables xa, xb, t̂ completely determines a di-jet total cross section. However,

for many practical purposes, it is more convenient to use a differential cross section expressed in

terms of measurable quantities such as rapidity and transverse momentum, see Chapter 17 of [5].

By changing the integration variables from xa, xb, t̂ to yc, yd, p⊥ we can write Eq. 3.1 as

σdi−jet =
∑
a,b,c,d

σa b→c ddi−jet =

=
∑
a,b,c,d

∫
dycdyddp⊥

2p⊥ŝ
S

fa/hA(xa, Q
2)fb/hB (xb, Q

2)
dσ̂

dt̂
(a b→ c d) , (3.2)

where yc and yd are the values of rapidities of final state partons in the center of mass frame of

colliding hadrons hA and hB and p⊥ is an absolute value of transverse momentum of the final state

particles,
√
ŝ/2 is a collision energy of initial state partons and

√
S/2 is a collision energy of hadrons.

The corresponding differential cross sections

d3σa b→c ddi−jet

dycdyddp⊥
= fa/hA(xa, Q

2)fb/hB (xb, Q
2)

2p⊥ŝ
S

dσ̂

dt̂
(a b→ c d) (3.3)

gives a probability to produce two final state partons c and d with yc ∈ [yc, yc+dyc], yd ∈ [yd, yd + dyd]

and p⊥ ∈ [p⊥, p⊥ + dp⊥]. The analytical expressions for the partonic 2→ 2 LO QCD cross sections

as functions of the Mandelstam variables ŝ, t̂, û are given in Appendix D. The connection between
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the set of variables {ya, yb, p⊥} with {xa, xb, ŝ, t̂, û} is given by

xa =
2p⊥√
S

cosh y∗ eY , (3.4)

xb =
2p⊥√
S

cosh y∗ e−Y , (3.5)

ŝ = 4p2
⊥ cosh2 y∗, (3.6)

t̂ = −2p2
⊥ cosh y∗e−y∗ , (3.7)

where

y∗ = yc − yd, (3.8)

Y =
1

2
(yc + yd), (3.9)

see Chapter 17 of [5].

Using the differential cross section given by Eq. 3.3 one can generate di-jet events for the process

a b→ c d according to the hit-or-miss algorithm. The generation cycle will look like this:

1. Explore the 2 → 2 phase space and find the phase space point {yb, yc, p⊥} which has the

maximal weight ωmax(yc, yd, p⊥) ≡ max
(
d3σa b→c ddi−jet /dyc dyb dp⊥

)
.

2. Generate uniformly {yc, yd, p⊥} in a certain range and for each combination of yc yd and p⊥
find the corresponding weight ωi(yc, yd, p⊥) ≡ d3σa b→c ddi−jet /dyc dyb dp⊥.

3. For each weight ωi find the ratio ωi(y
i
c, y

i
d, p

i
⊥)/ωmax(yc, yd, p⊥) and accept or reject a given

event according to the hit-or-miss method.

4. For each accepted combination {yic, yid, pi⊥} evaluate components of four-momenta of particles

in the initial and final state according to

pµa = (xaEA, 0, 0, xaEA) , (3.10)

pµb = (xbEB, 0, 0, −xbEB) , (3.11)

pµc = (p⊥ sinh yc, p⊥ cosφ, p⊥ sinφ, p⊥ cosh yc) , (3.12)

pµd = (p⊥ sinh yd, −p⊥ cosφ, −p⊥ sinφ, p⊥ cosh yd) , (3.13)

where the value of the azimuthal angle φ has to be generated with the uniform probability in

the interval [0, 2π].

One important comment has to be added to the considerations above, namely that the hard

cross sections from Appendix D are averaged over spin and colour indices which means that the

generated events will not carry any information about spin and colour of produced particles. For

many purposes this turns out to be sufficient enough. However, if one wants to add parton showering

(PS) processes on top of partonic events one has to generate colours of produced particles as well.

In the next section we will describe a Monte Carlo algorithm to accomplish this task.
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3.3 Generation of QCD events in the leading colour approxima-

tion

In this section we will discuss the original Lund Monte Carlo algorithm proposed by Bengtsson

[94] which allows to generate colour charges of the initial and final state partons. The generation

of the colour charges is required to take into account so called colour coherence effects [97], [93]

since the radiation function Wmn of the “colour dipole” is proportional to the product of two colour

charge operators Qm, Qn [98]. The colour charge operators are defined such that the colour charge

operator squared gives Q2
n = CF , if n corresponds to a quark and Q2

n = CA, if n corresponds to a

gluon, and, four colour singlets Q2
n = 0. The constants CF and CA are called quadratic Casimir

operators and are defined as

tiN t
i
N = CF , (3.14)

f iklf jkl = CAδ
ij , (3.15)

where tiN are SU(3) group generators in so called fundamental representation and f ijk are so called

SU(3) group structure constants, see Appendix A.

As an example to illustrate Bengtsson’s algorithm let us consider a quark-quark scattering

process qq → qq. At the leading order a corresponding amplitude is given by a sum of two diagrams

each containing one intermediate gluon, see Fig. 3.1. According to the Feynman rules given in

Fig. 1.1, each diagram will contain a product of two SU(3) generators (t)ab (t)cd, where indices a, b, c, d

correspond to the colours of initial and final state quarks. Consider, for example, a t̂-channel of the

qq → qq process. Using the colour flow basis of QCD one can show that the product of two SU(3)

generators (t)ab (t)cd can be written as2

(t)ac (t)bd = TR

(
δadδ

b
c −

1

Nc
δac δ

b
d

)
, (3.16)

where Nc is a number of colours in QCD, TR is defined in Appendix A and a graphical representation

of this equation is given in Fig. 3.2. The colour structure of the QCD amplitudes can be drastically

simplified in the large-Nc approximation proposed by ’t Hooft [99]. According to this approach,

one works in the limit Nc →∞ which allows to neglect the term proportional to 1/Nc in Eq. 3.16.

The resulting colour flow topologies for the t̂- and û-channel matrix elements squared are shown in

Fig. 3.3.

Note that in the large-Nc limit the interference term between t̂- and û-channels becomes

subleading in comparison to the t̂- and û-channel matrix elements squared. In order to demonstrate

it let us write the t̂- and û-channel amplitudes in the the large-Nc limit as

Ma,b
c,d(t̂) = Ca,bc,d M(t̂)

largeNc≈ δadδ
b
c M(t̂), (3.17)

Ma,b
c,d(û) = Ca,bd,c M(û)

largeNc≈ δac δ
b
d M(û), (3.18)

where C is the part of the amplitude M which carries information about the colours of initial and

2For the formulation of the QCD in the colour flow basis see [95], [96].
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a

b

c

d

a)

a

b

c

d

b)

Figure 3.1: Diagrams contributing to the qq → qq. a) t̂-channel gluon exchange. b) û-channel gluon
exchange.

final state quarks. The matrix elements squared summed over all possible combinations of colours

are given by

∑
a,b,c,d

|Ma,b
c,d(t̂)|2

largeNc≈
∑
a,b,c,d

δadδ
b
c |M(t̂)|2 = N2

c |M(t̂)|2, (3.19)

∑
a,b,c,d

|Ma,b
c,d(û)|2 largeNc≈

∑
a,b,c,d

δac δ
b
d |M(û)|2 = N2

c |M(û)|2. (3.20)

We see that in the large-Nc limit both t̂- and û-channel contributions being summed over all possible

colour combinations are proportional to N2
c . However, for the interference term we get

∑
a,b,c,d

Ma,b
c,d(t̂)M

a,b
c,d(û)

largeNc≈
∑
a,b,c,d

δadδ
b
c δ

a
c δ
b
d M(t̂)M(û) = Nc M(t̂)M(û). (3.21)

Therefore, the interference terms for the qq → qq process in the large-Nc limit gives a subleading

contribution and thus can be neglected3. The colour flow topologies in the large-Nc limit for the

qq → qq process are given in Fig. 3.3.

a

b

c

d

a

b

c

d

a

b

c

d

= TR −1/Nc

Figure 3.2: The colour flow decomposition for the t̂-channel amplitude of the qq → qq process.
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d

≈ T2
R

2

b)

Figure 3.3: Large-Nc approximation for the process qq → qq. a) t̂-channel approximation. b)
û-channel approximation.

Now we can describe how the original Lund Monte Carlo colour assignment algorithm works

3For the other 2→ 2 LO QCD processes, see [94].
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[94]. Since in the large-Nc limit we neglect the interference terms, the total cross section is given by

a sum of two terms

σ ≈ σT + σU , (3.22)

where

σT ∼ ŝ2 + û2

t̂2
,

σU ∼ ŝ2 + t̂2

û2
. (3.23)

The colour assignment algorithm then is given by the following steps:

1. For each generated event evaluate a ratio σT /(σT + σU ).

2. Generate a random number R ∈ [0, 1] according to the uniform probability distribution.

3. If condition R < σT /(σT + σU ) holds, select a colour topology shown in Fig. 3.3 a), otherwise

select a colour topology shown in Fig. 3.3 b).

As a certain topology was selected, one stores the information about it according to the

Les-Houches Event File (LHEF) standard4 [81]. In this notation, each colour line is defined by

two numbers: in the case of quarks, first number labels the colour line and the second number

is always set to zero (and vice versa for antiquarks) and in the case of gluons both number are

non-zero (since gluon carries two colour charges). The connection between the LHEF notation

and the colour flow topologies in Fig. 3.3 is shown in Fig. 3.4. In the LHEF notation each colour

flow line is labelled by an integer number. Depending on the version the LHEF standard the

numbering of the colour flow lines start either from 101 (LHEF standard version 1) or from 501

(LHEF standard version 3). Different numbers are used to distinguish different colour lines. For

example, for the process qq → qq we have only two different colour flow lines which are labelled

by 501 and 502, correspondingly, as shown in Fig. 3.4. In the LHEF notation the correspondence

between particles in different channels of a given process and corresponding colour flow topologies is

described by two colour indices, see Fig. 3.5. For example, the connection between the t̂-channel for

the process qq → qq and the corresponding colour flow topology shown in Fig. 3.4 a) is given by

q (501 0) q (502 0)
t̂−channel−−−−−−→ q (502 0) q (501 0). In case of quarks the first number in parenthesis

is given by the number of the colour flow line associated with a given quark and the second number

is always equal to zero. In case of antiquarks one has to “swap” both numbers. For example, for

the t̂-channel of the q̄q̄ → q̄q̄ process we have q̄ (0 501) q̄ (0 502)
t̂−channel−−−−−−→ q̄ (0 502) q̄ (0 501). For

the gluons both integers are non-zero since in the large-Nc approximation the colour-flow of gluon

is described by two colour lines. The connection between the û-channel for the process qq → qq and

the colour flow topology in Fig. 3.4 b) is given by q (501 0) q (502 0)
û−channel−−−−−−−→ q (501 0) q (502 0).

By comparing the assignment of the colour indices for the t̂- and û-channels of the qq → qq process

we see that the numbers of the colour flow lines were swapped for the final state quarks. This

interchange of indices is required by consistent treatment of the t̂- and û-channels since, t̂- and

4In the following we will also refer to the files with events written according to the LHEF standard as to Les-Houches
Event (LHE) files.
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û-channel diagrams are related to each other though the interchange of the final state legs which, in

turn, leads to the interchange of the colour flow lines, see Fig. 3.3.

501

502

502

501

501 0

502 0

502 0

501 0

q (501 0) q (502 0)
t̂−channel−−−−−−→ q (502 0) q (501 0)

a)

501

502

501

502

501 0

502 0

501 0

502 0

q (501 0) q (502 0)
û−channel−−−−−−−→ q (501 0) q (502 0)

b)

Figure 3.4: Representation of colour topologies from Fig. 3.3 in the LHEF notation. a) The
t̂-channel topology. b) The û-channel topology.

For our DPS simulations in Chapter 4 and Chapter 5 we will use the original Lund Monte Carlo

algorithm [94] as implemented into the Pythia event generator [255] - [257]5. The usage of the same

colour generation algorithm as in the Pythia code allows to combine our DPS simulations with the

initial state radiation (ISR) and final state radiation (FSR) of Pythia. Later in Chapter 4.9 we

will discuss the modifications to the Pythia code and to the LHEF standard necessary to read and

“shower” the DPS events from the LHE files.

Finally, before closing this section, we shall notice that the large-Nc approximation is consistent

with most standard ISR [92],[93] and FSR [85] - [91] algorithms since both large-Nc approximation

and parton showering neglect the interference effects6.

Figure 3.5: An event in the LHEF notation, from [79].

5A reader interested in the realization of the colour generation should also look into the description of the methods
of the class SigmaQCD of the Pythia 8 code [83].

6For the improved parton shower algorithms see [100] - [103].
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Chapter 4

Four-jet DPS production in

proton-proton collisions

4.1 Introduction

Over decades the four-jet DPS production remains one the most intensively studied DPS production

channels. The first theoretical study of the four-jet DPS production was made by Paver and Treleani

[116], two years later after the pioneering paper on the double Drell-Yan production published by

Goebel, Halzen and Scott [114]. In Ref. [116] Paver and Treleani founded main concepts of the DPS

phenomenology. In particular, they provided a modern expression for the total DPS cross section,

introduced transverse dependent generalized double parton distribution functions Γa1,a2/hA(x1, x2, b)

and proposed a widely used factorization ansatz Γa1,a2/hA(x1, x2, b) ≈ fa1/hA(x1) fa2/hA(x2)F (b).

Subsequently Paver and Treleani [119] performed the first phenomenological study of the four-jet

DPS production within the DPS formalism developed in [116]. It was demonstrated that the

four-jet DPS events could be observed at the Spp̄S and Tevatron colliders operating at that time.

Furthermore, it was argued that four-jet events produced via DPS mechanism will have configurations

distinctive from those produced via the standard SPS mechanism. This study was followed by two

theoretical publications [121], [122] where it was proposed how to discriminate between SPS and

DPS events and most of nowadays commonly used DPS-sensitive variables were introduced.

The aforementioned research motivated experimental studies of DPS phenomena and in 1986 the

AFS collaboration performed the first pioneering measurements of the four-jet DPS production at√
S = 63 GeV collision energy and determined σeff = 5 mb [128]. Unfortunately, neither statistical

nor systematic uncertainties were provided. One of the main technical difficulties at that time

was the correct estimation of the SPS background which is inextricably connected with correct

extraction of the DPS signal. After the ASF measurements the study of the four-jet DPS production

continued in both experimental and theoretical communities. In 1988 Mangano provided a new

phenomenological study of the four-jet DPS production where the SPS background was estimated

within an improved theoretical framework [127]. In 1991 the UA2 collaboration measured a DPS

production in the four-jet final state at
√
S = 630 GeV collision energy [129]. This time only a

lower error boundary was provided. Finally, in 1993 the CDF collaboration came up with the first

convincing measurements of the four-jet DPS production at
√
S = 1.8 TeV collision energy [130].

Later, in 2013 and 2016 the CMS [108] and the ATLAS [145] collaborations measured the four-jet

73
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DPS production at
√
S = 7 TeV collision energy.

References [128], [129], [130], [108], [145] list all currently available experimental studies of the

four-jet DPS production in pp and pp̄ collisions. Whereas in [128], [129], [130], [145] the main

research goal was an extraction of the value of σeff , see Fig. 2.2 and Fig. 2.3, in [108] the main

accent was put on studies of various DPS-sensitive distributions.

These experimental measurements were accompanied by several phenomenological studies.

Namely, in 2009 Berger et al. [229] published a paper with a study of the impact of ISR and FSR

effects on the four-jet DPS production where DPS events were constructed out of two sets of di-jet

events simulated at NLO accuracy level with included PS effects. In the same year Domedy et

al. [152] considered different models of correlations between Bjorken variables and the transverse

distance between partons b in a generalized parton distribution function Γa1,a2/hA(x1, x2, b) and

demonstrated that correlations of this type can lead to a scale-dependent σeff . A similar study was

performed by Blok et al. [158]. It was demonstrated that the correlations of partons due to the

“1v2” DPS contribution, see Fig. 2.7 b), can explain the measured value of σeff , see Fig. 2.2 and Fig.

2.3. In 2015 Maciu la and Szczurek proposed new jet cuts to increase the DPS contribution to the

four-jet production and identified phase-space corners where the DPS exceeds the SPS contribution

[230]. In particular, it was shown that under certain conditions the DPS contribution may reach up

to 90% of the total four-jet cross section. A similar study of four-jet DPS production within the

kT -factorization approach was performed in [231], [232] and within the leading-logarithmic BFKL

formalism [244] - [249] in [233].

We also should mention that concurrently to the aforementioned studies of four-jet DPS

production development of Monte Carlo DPS and MPI models was significant advanced, see

[258] - [263], [265], [266] and [268]. In particular, the MPI model of the Pythia event generator

evolved from the very first MPI model proposed by Sjöstrand in mid-eighties of the past century

[258] up to the very sophisticated modern model of Pythia 8 [258] - [263]. Among many other

features, this model accounts for the momentum and number conservation and therefore takes

into account partonic correlations in the longitudinal momentum and flavour. Additionally, there

exist Pythia tunes for various DPS production processes [162], [163]. In particular, the tune for

the four-jet DPS production [162] accounts for dynamical changes of σeff due to the longitudinal

partonic correlations.

The studies of DPS by Domedy et al. [152] and Blok et al. [158] were dedicated to the connection

between the values of σeff and the longitudinal partonic correlations. The DPS productions in the

paper of Berger et al. were constructed by overlaying simulations of the SPS di-jet events which

does not allow to study partonic correlations. In this chapter we present our simulations of four-jet

DPS production and perform comparison between DPS and SPS contributions to the four-jet cross

section. Additionally, we discuss various technical aspects of DPS simulations, such as factorization

scale dependence, the role of different partial contributions to the four-jet DPS production and their

impact on four-jet simulations. We also study the impact of longitudinal partonic correlations due to

the dDGLAP evolution of dPDFs and identify regions of the DPS phase space where the dDGLAP

evolution effects give rise to significant changes in differential DPS distributions. In section 4.9 we

discuss an extension of the Les-Houches version = “1” standard and modifications to the Pythia 8

code required to read and “shower” DPS events from Les-Houches files. This will make it possible to
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combine our DPS simulations with the ISR and FSR simulations of Pythia. We also present checks

of these modifications. Finally, in section 4.10 and section 4.11 we discuss problems of existing DPS

parton shower algorithms as well as some recent achievements in their development. Furthermore,

we present a study of the impact of initial and final state radiation on our DPS simulations.

4.2 Phenomenology of double parton scattering

We begin with a description of the main ingredients used to simulate four-jet DPS production. As a

starting point to generate DPS events, we assume factorization of Γi,j/p(x1, x2, b) into a product

of longitudinal and transverse dependent pieces Γi,j/p(x1, x2, b) ≈ Di,j/p(x1, x2)F (b). Using this

substitution one can write a total DPS cross section for pp collisions as

σDPS
AB =

1

1 + δAB

1

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiDa1,a2(x1, x2, Q
2
1, Q

2
2)Db1,b2(x3, x4, Q

2
1, Q

2
2)×

× σ̂a1 b1→A σ̂a2 b2→B, (4.1)

where the prefactor 1/ (1 + δAB) was used to reflect the fact that, in case of production of two

indistinguishable finals states A and B, one has to divide a total DPS cross section by 2. Assuming

no partonic correlations in x-space one can substitute Da1,a2(x1, x2, Q
2
1, Q

2
2) ≈ fa1(x1, Q

2
1)fa2(x2, Q

2
2)

in Eq. 4.1 which gives us the “pocket formula of DPS”

σDPS
AB =

1

1 + δAB

∑
a1,a2,b1,b2

σa1 b1→A σa2 b2→B
σeff

. (4.2)

Such factorization, however, violates momentum and number (flavour) dPDF sum rules given by

Eq. 2.17 - 2.20. The momentum conservation can be restored in a trivial way by multiplying a

factorized product of PDFs by an appropriate cutoff function, for example

Da1,a2(x1, x2, Q
2
1, Q

2
2) ≈ fa1(x1, Q

2
1) fa2(x2, Q

2
2) θ(1− x1 − x2), (4.3)

where θ(1 − x1 − x2) excludes unphysical region where x1 + x2 > 1. The number conservation,

however, cannot be restored in a trivial way. Nevertheless, Eq. 4.3 is still commonly used for

a phenomenological modelling of DPS. In this thesis we will refer to the dPDFs approximated

according to Eq. 4.3 as to “naive” dPDFs and will use them as a baseline in comparison against

more realistic GS09 dPDFs. We also should notice that “naive” dPDFs, as in Eq. 4.3, do not allow

to reduce Eq. 4.1 to the “pocket formula” Eq. 2.11. Instead, by substituting Eq. 4.3 into Eq. 4.1,

we get

σDPS
AB =

1

1 + δAB

1

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi fa1(x1, Q
2
1) fb1(x3, Q

2
1) σ̂a1,b1→A ×

× fa2(x2, Q
2
2) fb2(x4, Q

2
2) σ̂a2,b2→B θ(1− x1 − x2) θ(1− x3 − x4). (4.4)

In the following we will use Eq. 4.1 with GS09 dPDFs [173] and Eq. 4.4 for the Monte Carlo

generation of DPS events according to the hit-or-miss algorithm we have described in Chapter 3.
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In order to find the total DPS cross section we also use Eq. 4.1 and Eq. 4.4. The partonic 2→ 2

QCD cross sections are calculated at LO accuracy level and given in Appendix D. In order to

generate colour charges of the produced partons we use the original Lund Monte Carlo colour

flow algorithm [94] which is also used in the Pythia event generator. A numerical integration is

performed by means of the integration routines from GSL library [294]. In particular, we use the

VEGAS algorithm of Lepage [295] which is based on importance sampling. As we have discussed in

Chapter 3.1, it is essential to find a phase space point which gives a highest value of the DPS weight

ωDPS
max to avoid generation of events with weights bigger than one. Since during the Monte Carlo

integration VEGAS performs a scan of the available DPS phase space in order to find regions which

give the biggest contribution to the total DPS cross section, we combine in our code the search of

ωDPS
max with the evaluation of σDPS

AB . Namely, we compare a weight ωi of a generated phase space

point against a weight ωi−1 of a previously generated phase space point and if condition ωi ≥ ωi−1

is satisfied then we set ωDPS
max = ωi. When VEGAS finishes the scan of the DPS phase space we get

a value of ωDPS
max evaluated at the accuracy level high enough to avoid the problem events with the

weights bigger than one, see Chapter 3.1.

After performing the aforementioned procedure for each subprocess contributing to pp
DPS−−−→ 4j

we end up with the array of maximal weights for each partial contribution and corresponding

total cross sections. After that, the hit-or-miss algorithm is used to generate a desired number

of unweighted DPS events. A corresponding number of DPS events for each subprocess NDPS
sub is

obtained from the ratio

NDPS
sub

NDPS
tot

=
σDPS

sub

σDPS
tot

, (4.5)

where NDPS
tot , σDPS

sub and σDPS
tot are the total number of DPS events, the total DPS cross section for a

given subprocess and the total DPS cross section for the pp
DPS−−−→ 4j process correspondingly. The

generation of events for each subprocess runs until a number of generated events reach NDPS
sub .

In our analysis we use two different models of dPDFs. As a base line we use “naive” dPDFs,

as in Eq. 4.3, constructed out of MSTW2008 LO PDFs [298]. In order to estimate the impact of

partonic correlations in x-space we use unequal scale GS09 dPDFs [173], [174] which were designed

as the double parton counterparts of the MSTW2008 LO PDFs. In our program we also use the

LHAPDF6 library [296] in order to work with MSTW2008 grids and the interpolation routine for

GS09 dPDFs [297].

The last ingredient for the four-jet DPS phenomenology we have to discuss before presenting

results is the symmetry factor 1/(1 + δAB) in Eq. 4.1 and Eq. 4.4. In the available publications on

four-jet DPS production it is sometimes used in a slightly different context which may lead to a

possible confusion. We will start the discussion from the origin of the 1/2 factor in the experimental

parametrization of the DPS cross section and in the MPI model of Pythia. Then we will discuss

the origin of the 1/2 factor in the theoretical and phenomenological studies of DPS and argue that

all approaches give equivalent results.

The “pocket formula of DPS”, Eq. 2.11, used to extract the value of σeff in the four-jet
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production processes [128], [129], [130], [145] is given by

σDPS
four−jet =

1

2

σ2
di−jet
σeff

, (4.6)

where σ2
di−jet is a total di-jet cross section . This ansatz is inspired by the first Monte Carlo model of

MPI developed by Sjöstrand in 1985 [258]. The model of [258] is based upon Poissonian statistics1.

Within this framework a probability of an MPI event with n interactions to happen is given by

Pn =
〈n〉e−〈n〉

n!
, (4.7)

where 〈n〉 is an average number of interactions in the MPI event given by the ratio 〈n〉 = σn/σND

where σn is the total cross section for n hard or semi-hard interactions and σND is the total

nondiffractive cross section. Assuming σn to be much smaller than σND one can approximate

exp (−〈n〉) ≈ 1 and thus

Pn ≈
〈n〉
n!
. (4.8)

Therefore, a probability of an MPI event with one interaction to happen is P1 = σ1/σND. Using

Eq. 4.8 iteratively one can express probabilities P2, . . . Pn in terms of P1. For example,

P2 =
σ2

σND
=

1

2!
P 2

1 =
1

2

(
σ1

σND

)2

. (4.9)

As we see, within this approach the factor 1/2 emerges due to n! in the denominator of the Poisson

distribution and the connection between MPI model of Pythia and the pocket formula of DPS is

given by

σ2 =
σND

2

(
σ1

σND

)2 σND

σeff
=

1

2

σ2
1

σeff
, (4.10)

where σND/σeff gauges the deviation from the Poisson distribution, see [260].

The parametrization of the DPS cross section in Eq. 4.10 coincides with the expression for the

four-jet DPS cross section in Eq. 4.6. The factor 1/2 in Eq. 4.6 and Eq. 4.10 also can be seen as a

symmetry factor which one has to introduce for two indistinguishable di-jet production processes.

Since in the experimental measurements of the four-jet DPS production one does not distinguish

between di-jets produced by different partons all di-jet production processes are indistinguishable

and thus the factor 1/2 is always present in Eq. 4.6. In the MPI model of Pythia different di-jet

production processes in general are not equivalent since they have different 2 → 2 cross sections

and, therefore, different probabilities to be generated. In order to illustrate it let us assume that

there are two different processes A and B which contribute to the MPI production. In this case

P1 =
σ1A

σND
+
σ1B

σND
(4.11)

1More precisely, upon Poissonian statistics with modifications necessary for correct description of charged multiplicity
distribution and energy-momentum conservation. The review of the state-of-the-art of the MPI modelling is given in
[263].
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and, therefore,

σ2AB

σND
=

1

2

(
σ1A

σND
+
σ1B

σND

)2

=
1

2

(
σ1A

σND

)2

+
1

2

(
σ1B

σND

)2

+
σ1A σ1B

σ2
ND

. (4.12)

By multiplying Eq. 4.12 by σND we get

σ2AB =
1

2

σ2
1A

σND
+

1

2

σ2
1B

σND
+
σ1A σ1B

σND
=

1

2σND

∑
a,b={A,B}

σa σb. (4.13)

As we have mentioned before, the ratio σND/σeff gauges the deviation from the Poisson distribution.

Therefore, in the same way as in Eq. 4.10, in order to account for the deviation from the Poisson

distribution, we can multiply the RHS of Eq. 4.13 by σND/σeff yielding

σ2AB =
1

2

σ2
1A

σeff
+

1

2

σ2
1B

σeff
+
σ1A σ1B

σeff
=

1

2σeff

∑
a,b={A,B}

σa σb. (4.14)

Now let us describe the origin of the factor 1/2 in theoretical and phenomenological studies of

DPS. In the pioneering paper of Paver and Treleani [116] the distribution of partons in a transverse

plane of a proton F (b) was postulated to have a Gaussian form

F (b) =
1

πR2
exp

(
−|b|2/R2

)
, (4.15)

where R is the proton radius. Substituting this ansatz into Eq. 2.7 we get

σDPS
AB =

1

π2R4

∫
d2b e−2|b|2/R2

 ∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi [. . .]

 =

=
1

2πR2

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi [. . .] . (4.16)

If we now neglect correlations in x-space we can write Eq. 4.16 as

σDPS
AB =

1

2πR2

∑
a1,a2,b1,b2

σa1b1→A σa2b2→B. (4.17)

If we denote σ̃eff = πR2, we would get

σDPS
AB =

1

2σ̃eff

∑
a1,a2,b1,b2

σa1b1→A σa2b2→B, (4.18)

which formally coincides with Eq. 4.14. However, the value of σ̃eff in Eq. 4.18 and the value

of σeff in Eq. 4.14 will not coincide. In fact, the definition of σeff in Eq. 2.6 tells us that the

factor 2 in the denominator of Eq. 4.18 has to be absorbed into the definition of σeff since

σeff =
[∫
d2b F 2(b)

]−1
= 2πR2 = 2σ̃eff . Therefore, we see that Eq. 4.18 and Eq. 4.14 disagree

between each other. However, as it was shown in [192], [193] the correct quantum treatment

of the DPS cross section requires a symmetry factor 1/2! in case of a DPS production of two
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indistinguishable final states2. Therefore, the correct expression reads

σDPS
AB =

1

1 + δAB

1

σeff

∑
a1,a2,b1,b2

σdi−jeta1b1→A σ
di−jet
a2b2→B, (4.19)

where σeff is defined as in Eq. 2.6 and A and B are two final states produced in the first and the

second hard interactions correspondingly. In the following we will refer to such approach to the

symmetry factor 1/2 as to the quantum mechanical approach. It may seem that the treatment of

the symmetry factor 1/2 as in Eq. 4.14 and Eq. 4.19 may lead to different results. However, it is

not the case. For example, consider a DPS process involving (gg → gg) and (qq̄ → gg) processes.

According to the Poissonian approach we get

σDPS
AB =

1

2

1

σeff
[σgg→gg σqq̄→gg + σqq̄→gg σgg→gg] =

1

σeff
σgg→gg σqq̄→gg. (4.20)

One would get the same expression according to the quantum mechanical approach. Namely, we get

σDPS
AB =

1

2

1

σeff

∫ 4∏
i=1

dxiDgq(x1, x2)Dgq̄(x3, x4) σ̂gg→gg(x1, x3) σ̂qq̄→gg(x2, x4) +

+
1

2

1

σeff

∫ 4∏
i=1

dxiDqg(x1, x2)Dq̄g(x3, x4) σ̂qq̄→gg(x1, x3) σ̂gg→gg(x2, x4) =

=
1

σeff
σgg→gg σqq̄→gg. (4.21)

Consider now the production of two distinguishable final states. For example, consider the DPS

process involving (gg → gg) and (gg → qq̄). In this case the Poissonian approach yields

σDPS
AB =

1

σeff
σgg→gg σgg→qq̄, (4.22)

and the quantum mechanical approach gives

σDPS
AB =

1

σeff

∫ 4∏
i=1

dxiDgg(x1, x2)Dgg(x3, x4) σ̂gg→gg(x1, x3) σ̂gg→qq̄(x2, x4) =

=
1

σeff
σgg→gg σgg→qq̄, (4.23)

which again is the same us in Eq. 4.22. Similar checks can be performed for the other combinations

of LO 2→ 2 processes.

Therefore, we can conclude that both Poissonian and quantum mechanical approaches give

the same symmetry factor 1/2 for the four-jet DPS cross sections. We also have argued that the

symmetry factor in some early papers on the four-jet DPS production was missed which together

with the usage of the the Gaussian parametrization of the transverse plane distribution function

2To our knowledge, the first publication where it was explicitly stated that production of two indistinguishable final
state partons in di-jet production processes a1b1 → A and a2b2 → B requires an additional symmetry factor was the
paper of Treleani and Strikman [213]. The detailed derivation and a generalization for multiple hard scattering was
given in papers of Diehl et al. [192], [193]. Earlier theoretical publications on DPS were motivating the presence of
the factor 1/2 due to the Gaussian parametrization F (b) which gives an incorrect expression for σeff as in Eq. 4.18.
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F (b) in Eq. 4.15 and interpretation of the σeff as a transverse area of proton could lead to the

wrong estimate σeff = πR2 instead of the correct σeff = 2πR2.

In Chapter 3 and this section we have provided all necessary ingredients for the simulations of

the four-jet DPS production. In the rest of this chapter we present our results on four-jet DPS

production in pp collisions.

4.3 DPS-sensitive variables

It was noticed a long time ago that DPS and SPS events tend to occupy different regions of a

four-jet phase space [119]. For example, this can be seen from the asymptotic behaviour of the

LO 2→ 2 cross sections in Eq. 4.1 and Eq. 4.4. The LO 2→ 2 QCD processes at the low values

of p⊥ are dominated by the t̂-channel gluon exchange which behaves like 1/t̂2 ∼ 1/p4
⊥, see [263].

Therefore, at low p⊥ values the LO DPS cross section will approximately behave like ∼ 1/p8
⊥. This

behaviour leads to infra-red divergences for soft particle production in MPI models and has to be

regularized according to a certain regularization scheme3. For example, one can impose a sharp

cutoff on p⊥ approximately at ΛQCD ≈ 1− 2 GeV. This regularization is unavoidable for the MPI

modelling where transverse momentum of produced partons is typically low. However, if we consider

a four-jet DPS production of four hard jets, this infra-red divergence will be naturally regularized

by corresponding cuts on transverse momenta of produced jets. Nevertheless, as we will see, the

scaling behaviour ∼ 1/p8
⊥ will lead to the significant enhancement of a DPS cross section even for

jets with relatively large values of the transverse momenta (p⊥ ≈ 20− 35 GeV). Moreover, the usage

of the LO 2 → 2 matrix elements for the event generation automatically implies that the di-jets

produced in a given DPS event will be well balanced in transverse momentum and well separated

in rapidity, see Fig. 4.1. All these features of four-jet DPS events allow to introduce a set of so

called DPS-sensitive variables one can use to discriminate between DPS and SPS events as it was

first proposed in [119]. In Appendix E we list some of these variables used in different experimental

analysis of four-jet production.

We will start our analysis of the four-jet DPS production in a relatively simple setup, without

parton shower effects. In this case the di-jets generated according to Eq. 4.1 and Eq. 4.4 will

be exactly balanced in transverse momentum drastically reducing the number of DPS-sensitive

variables. Nevertheless, we will show that even without taking the parton shower effects into account

one can draw important conclusions on behaviour of DPS differential distributions. At this stage

we consider the DPS distributions in terms of a leading jet p⊥ and a maximal rapidity separation

∆Y ≡ max|yi − yj | of produced jets. Adding the ISR and FSR effects will, obviously, introduce

some distortion to our parton level simulations. On the other hand, incorporation of ISR and FSR

effects in the simulations will allow us to include additional DPS-sensitive variables into the analysis

and make the simulations more realistic. In sections 4.9 - 4.11 we will demonstrate how DPS events

produced with our own DPS code can be fed to the Pythia 8 event generator and show the impact

of initial and final state radiation on the parton level simulations. Additionally, we will discuss

some open problems and perspectives of modelling of the ISR in DPS processes.

3For the details see [263].
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pT

η

SPS DPS

Figure 4.1: Schematic picture of the SPS and DPS events in the rapidity-transverse momentum
coordinates.

4.4 Contributions to a four-jet DPS production

The LO QCD 2→ 2 partonic cross sections used in our simulations are listed in Appendix D. For

Nf different flavours the generation of di-jet events with the LO QCD 2→ 2 partonic cross sections

in Appendix D involves

Ndi−jet = 1 + 2Nf + 2Nf (2Nf − 1) +Nf +Nf + 2Nf +Nf +Nf (Nf − 1) =

= 5N2
f + 4Nf + 1 (4.24)

different 2 → 2 processes. Therefore, for Nf = 4 we have Ndi−jet = 97. It implies that the for

four-jet DPS production we have NDPS
4j =

(
N2

di−jet −Ndi−jet

)
/2 = 4656 different DPS processes.

As described in section 4.2, our code uses VEGAS algorithm to scan the DPS phase-space to find the

maximal DPS weight and to evaluate the corresponding DPS cross section. Therefore, a complete

four-jet DPS simulations requires evaluation of 4656 integrals according to Eq. 4.1 or Eq. 4.4

which is a time consuming procedure. However, not all of these DPS processes will contribute

to the four-jet DPS production at the same rate. In order to illustrate it we draw 8 × 8 “chess

like” colour plot where colour of each square corresponds to the contribution to the four-jet DPS

production of all allowed flavour combinations for a given combination of two LO QCD 2 → 2

partonic cross sections. For example, the second square on the diagonal in Fig. 4.2 corresponds to

the DPS contribution ∑
i

(qi g → qi g)⊗ (qi g → qi g) , (4.25)

where i runs over all flavours under consideration. It is known that the complete four-jet SPS

production process pp
SPS−−→ 4j can be well approximated by production of two jets and two gluons

as pp
SPS−−→ 2j + 2g. For example, this approximation to the four-jet SPS production is used in the
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ALPGEN event generator [253]. By comparing contributions of different squares to the four-jet DPS

cross section in Fig. 4.2 we see that it is reasonable to approximate the four-jet DPS production

pp
DPS−−−→ 4j by pp

DPS−−−→ 2j+ 2g, where j = g, d, u, c, s, d̄, ū, c̄, s̄. Similar, though not exactly the same

approximation of four-jet DPS production was used in [232].
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Figure 4.2: Partial contributions of different combinations of LO QCD 2→ 2 processes to the total
DPS cross section evaluated for

√
S = 7 TeV, pjet⊥ ∈ [35, 100] GeV, yjet ∈ [−4.7, 4.7]. Here we have

used “naive” dPDFs constructed out of MSTW2008 LO PDFs. Factorization and renormalization
scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute values of the
jet transverse momentum in the first and the second hard processes correspondingly.

In Table 4.1 we present our computation of the total DPS cross section for pp
DPS−−−→ 2j + 2g and

pp
DPS−−−→ 4j processes for four different sets of cuts from [234]. As we can see, about 95% of the

total four-jet DPS cross section is contained in the DPS cross section for pp
DPS−−−→ 2j + 2g process

which is also in agreement with approximation from [232]. Nevertheless, one has to consider this

approximation carefully while working with differential distributions of DPS events. Obviously,

one expects that distributions obtained for pp
DPS−−−→ 4j process will show more activity then the

distribution obtained for pp
DPS−−−→ 2j+2g process. However, it does not mean that one will get exactly

the same increase for all regions of the DPS phase space. In Fig. 4.3 we present our simulations for

pp
DPS−−−→ 4j and for pp

DPS−−−→ 2j + 2g processes. We see that in some regions of the DPS phase space

the difference between distributions obtained for all possible DPS four-jet production processes

and the distributions obtained only for DPS processes contributing to production of two jets and

two gluons may reach ∼ 30% level. The biggest disagreement occurs for events produced at high



4.4. CONTRIBUTIONS TO A FOUR-JET DPS PRODUCTION 83

values of ∆Y = max|yi − yj |, see the lower panel in Fig. 4.3. Since, according to Eq. 3.4 and

Eq. 3.5, a sum of rapidities in a given di-jet event is equal to y1 + y2 = log (x1/x2), a high value of

∆Y = max|yi − yj | will correspond to two di-jet events each initiated by one low-x and one high-x

parton. It means that the contribution from the quark production processes which we discarded by

replacing four-jet DPS production pp
DPS−−−→ 4j by pp

DPS−−−→ 2j+2g becomes more and more important

as we move towards the high-∆Y region. Moreover, as we will show later in this thesis, the tail

of the ∆Y distribution demonstrates a strong dependence on different models of dPDFs and, as a

consequence, on different models of longitudinal partonic correlations. Therefore, in our simulations

we will use a complete set of four-jet DPS production processes to make sure that the correlation

effects are not affected by approximation pp
DPS−−−→ 4j ≈ 2j + 2g.

Cuts and collision energy
σDPS for

pp
DPS−−−→ 2j + 2g process

σDPS for

pp
DPS−−−→ 4j process

σ4j
DPS/σ

2j2g
DPS

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
42.45 45.45 1.07

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
3726.48 3912.27 1.05

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
330.53 347.13 1.05

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
22109.18 22898.68 1.04

Table 4.1: Comparison between DPS cross sections evaluated for pp
DPS−−−→ 2j + 2g and pp

DPS−−−→ 4j
processes. All cross sections are given in nb. Same dPDFs and scale choices as we used to produce
Fig. 4.2.
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Figure 4.3: Upper panel: leading jet p⊥ distributions simulated for pp
DPS−−−→ 4j and for pp

DPS−−−→ 2j+2g

processes. Lower panel: ∆Y = max|yi − yj | distributions simulated for pp
DPS−−−→ 4j and for

pp
DPS−−−→ 2j + 2g processes. Here we have used “naive” dPDFs constructed out of MSTW2008 LO

PDFs. Factorization and renormalization scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and
p2⊥ are equal to the absolute values of the jet transverse momentum in the first and the second hard
processes correspondingly. Statistical errors are given by σDPS

√
Nbin/Ntot where Nbin is a number

of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is total number of bin
entries for a given histogram.
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4.5 Scale dependence of the DPS cross section

Another important issue we have to discuss before presenting our simulation of the four-jet DPS

production is the choice of the scales Q1, Q2 for the di-jet production processes4. In practice, for

the DPS processes one selects the same values of Q1, Q2 as for the SPS processes. However, to the

best of our knowledge, there are no studies which could decisively favor a particular scale choice for

a particular DPS process. In our DPS studies we will compare our simulations against simulations

made with the MadGraph 5 [254] and the Pythia 8 [256] event generators and thus we stick to

the scale choices implemented into these two programs. Among the MadGraph options we will use

either a sum of the transverse masses Q =
∑2

i=1

√
m2
i + p2

⊥,i or the sum of the transverse masses

divided by two. Among the Pythia options we will use either the geometric or the the arithmetic

mean of the squared transverse masses of the two outgoing particles: Q =
√

(m2
1 + p2

⊥,1)(m2
2 + p2

⊥,2)

and Q = 1
2

√
(m2

1 + p2
⊥,1) + 1

2

√
(m2

2 + p2
⊥,2). For the production of massless particles all the

aforementioned scale choices reduce either to a transverse momentum of a jet Q = p⊥ or to its

doubled value Q = 2p⊥, where p⊥ is the absolute value of the transverse momentum of a jet in

a di-jet event. In Table 4.5 we show how the total DPS cross sections depends on different scale

choices. In addition to Q = p⊥ and Q = 2p⊥ options we add the partonic energy Q =
√
ŝ option for

illustrative purposes5.

Cuts and collision energy Q2
1,2 = p2

1,2⊥ Q2
1,2 = 4p2

1,2⊥ Q2
1,2 = ŝ1,2

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
44.80 27.59 20.93

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
3869.74 2529.62 1908.45

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
343.47 229.751 177.173

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
22729.2 16309.1 12696

Table 4.2: Dependence of the total DPS cross section for pp
DPS−−−→ 4j on different scale choices. All

cross sections are given in nb. Here we have used “naive” dPDFs constructed out of MSTW2008
LO PDFs.

We see that the value of a total DPS cross section demonstrates a high sensitivity to the scale

choice. The computation of the DPS cross section at the next-to-leading order (NLO) accuracy level

could improve the situation and reduce the scale dependence. Unfortunately, a computation of the

DPS processes at NLO accuracy level is a highly non-trivial task. Recently, the 1 → 2 splitting

functions required for the NLO DPS computations were calculated for the first time [210]. However,

the complete NLO DPS computations are yet to be done and hence the LO DPS computations

still remain the only available option for the DPS modelling6. Nevertheless, as we will see later in

4In our simulations we always set renormalization and factorization scales to the same value.
5The Q =

√
ŝ option is typically used for processes dominated by the ŝ-channel exchange. Since, as we have argued

in Chapter 4.3, the LO QCD 2→ 2 processes at low p⊥ are dominated by the t̂-channel exchange we will not use this
option in our simulations.

6In section 4.11 we discuss how one can improve LO DPS simulations by adding PS effects.
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this thesis, the LO DPS computations still allow to make important conclusions, in particular, to

identify the configurations of jets sensitive to partonic correlations in longitudinal momentum and

flavour.

4.6 Impact of GS09 dPDFs

In Chapter 2.2 we have described the system of dDGLAP evolution equations and properties

of its solutions called double parton distribution functions Da1,a2(x1, x2, Q
2
1, Q

2
2). These objects

carry information about partonic correlations in x-space, which implies Da1,a2(x1, x2, Q
2
1, Q

2
2) 6=

fa1(x1, Q
2
1) fa2(x2, Q

2
2), and approximately account for momentum and number conservation set by

GS sum rules, Eq. 2.17 - 2.20. In our analysis we will use DPS distributions generated according

to Eq. 4.4 as a baseline for the comparison against DPS distributions generated according to

Eq. 4.1. In order to generate DPS events according to Eq. 4.1 we use GS09 set with 300 grid points.

For the generation of events according to Eq. 4.4 we use central values of MSWT2009 LO PDF

set. In our analysis we consider four different quark flavours: d, u, s and c which are treated as

massless particles. We evaluate factorization scale for the first and the second hard interactions

in a given DPS process according to Q = 1
2

√
(m2

1 + p2
⊥,1) + 1

2

√
(m2

2 + p2
⊥,2). Since we consider LO

production of massless particles this expression reduces to Q = p⊥,i where p⊥,i is an absolute value

of a transverse momentum of a jet in a di-jet event.

Our results are given in Fig. 4.4 - Fig. 4.7. We see that the leading jet p⊥ distributions for

the DPS events generated with GS09 dPDFs differ by about 10% from the distributions of DPS

events generated with “naive” dPDFs. The situation changes for the distributions in terms of

∆Y = max|yi − yj | where the difference between both approaches may reach about 80% level at

high values of ∆Y, see Fig. 4.4.

Let us consider the ∆Y DPS distributions in more details. The distributions in Fig. 4.4 - Fig. 4.7

were simulated for two different sets of p⊥ cuts (p⊥ ∈ [35, 100] GeV and p⊥ ∈ [20, 100]) and for two

different collision energies (
√
S = 7 TeV and

√
S = 13 TeV). We see that if we change p⊥ cuts from

p⊥ ∈ [35, 100] GeV to p⊥ ∈ [20, 100] GeV while keeping the value of
√
S fixed then we decrease the

difference between the ∆Y DPS distributions generated with “naive” and GS09 dPDFs. Namely,

we see that the ratio between DPS distributions generated with “naive” and GS09 dPDFs at high

values of ∆Y stays closer to unity if we require p⊥ ∈ [20, 100] GeV, compare the ∆Y distribution in

Fig. 4.4 with the ∆Y distribution in Fig. 4.5 and the ∆Y distribution in Fig. 4.6 with the ∆Y

distribution in Fig. 4.7. We also observe the same behaviour of the ratio between the ∆Y DPS

distributions generated with “naive” and GS09 dPDFs if we decrease the value of the collision energy

while keeping p⊥-cuts fixed, compare the ∆Y distribution in Fig. 4.4 with the ∆Y distribution in

Fig. 4.6 and the ∆Y distribution in Fig. 4.5 with the ∆Y distribution in Fig. 4.7.

As we have argued in section 4.4, the DPS event with high value of ∆Y consists of two di-jet

production processes each involving one low-x and one high-x parton. However, at high values of

x the impact of the valence quark distributions becomes important. The GS sum rules given by

Eq. 2.18 - 2.20 preserve the conservation of the number of the valence quarks and therefore impose

correlations in flavour which should manifest themselves at high values of x. Since “naive” dPDFs do

not obey Eq. 2.18 - 2.20 we expect flavour correlations to contribute to the difference between ∆Y

DPS distributions generated with “naive” and GS09 dPDFs at high values of ∆Y. The presence of
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flavour correlations at high values of x can explain the observed behaviour of the difference between

∆Y DPS distributions generated with “naive” and GS09 dPDFs at high values of ∆Y. Namely, the

connection between Bjorken variables, rapidities, collision energy and transverse momentum in a

given di-jet event is given by Eq. 3.4 - 3.5. We see that the value of x is proportional to the ratio

2p⊥/
√
S. Therefore, for the fixed rapidities one can decrease the value of x either by increasing the

value of the collision energy
√
S or by decreasing the absolute value of the transverse momentum p⊥.

It means that by choosing lower value of the minimal p⊥-cut or by increasing the collision energy

we decrease values of Bjorken variables for a given di-jet event and hence move out of the valence

region which should decrease the role of the flavour correlations and reduce the discrepancy between

∆Y distributions generated with “naive” and GS09 dPDFs.

However, we shall stress that there are two possible contributions to the observed difference

between ∆Y distributions generated with “naive” and GS09 dPDFs. Namely, the effects due to

the correlations induced by the GS sum rules Eq. 2.17 - 2.20 and the effects due to the dDGLAP

evolution. Since “naive” dPDFs neither obey GS sum rules nor satisfy dDGLAP evolution equation

both types of effects can contribute to the difference between the DPS distributions generated with

“naive” and GS09 dPDFs. The comparison between DPS distributions generated with “naive” and

GS09 dPDFs only does not allow to separate effects due to the dDGLAP evolution and due to the

flavour correlations induced by GS sum rules. However, apart from GS09 and “naive” models of

dPDFs there is another commonly used approach to model dPDFs, implemented in the Pythia event

generator. This model does not account for dDGLAP evolution effects but accounts for momentum

and number conservation of partons and, partially, for “1v2” effects, as described in [260]. In

Chapter 6 of this thesis we will provide a detailed comparison between the GS09 and the Pythia

approaches to model dPDFs, perform a phenomenological study of the four-jet DPS production

similar to the one performed in this section and discuss the role of the flavour correlations.

Before closing this section several important comments have to be made. First of all, as it was

discussed in Chapter 2.5, a realistic DPS process would include various splitting DPS contributions,

see Fig. 2.7. Due to the splitting term on the RHS of the dDGLAP evolution equations, Eq. 2.13,

the DPS simulations with GS09 dPDFs effectively include “1v2” and “1v1” splitting contributions

schematically shown in Fig. 2.7 b) and c). However, as it was shown in [193], [194] the way

“1v2” and “1v1” DPS contributions are modelled by inhomogeneous dDGLAP evolution equations,

Eq. 2.13, is not consistent with the field-theoretical formulation of DPS. The consistent framework

to model “1v2” and “1v1” contributions without double counting between DPS and SPS and without

UV-divergences at small values of the transverse separation parameter b [193], [194] was proposed

by Diehl, Gaunt and Schönwald in [200] (DGS approach). However, a detailed phenomenological

analysis of the four-jet DPS production within the DGS framework is yet to be done. The study

of the double parton luminosities performed in [200] suggests that “1v2” and “1v1” contributions

are suppressed at large values of rapidity separation for Luūuū DPS luminosity and enhanced for

Lgggg as it is shown in Fig. 2.11. Clearly a more detailed phenomenological study within the DGS

framework is needed to find the impact of the “1v1” and “1v2” DPS contributions on four-jet

production processes. The comparative study of the four-jet DPS production within both GS09 and

DGS approach could, therefore, find the importance of the “1v1” and “1v2” DPS contributions for

the phenomenology of the four-jet DPS production processes. We suggest that our computations
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can be used as a baseline for such comparisons.

Finally, we also should argue that apart from a correct treatment of “1v2” and “1v1” contributions

one should also account for spin and colour partonic correlations in DPS events. In 1988 Mekhfi and

Artru [208] demonstrated that such correlations should be Sudakov suppressed. However, in 2011

Diehl and Shäfer shown that colour interference effects become important for valence quarks [192].

Moreover, as it was demonstrated in [187], [159] and [209] the spin correlations may have a serious

impact on the DPS distributions especially at large values of Bjorken-x. Therefore, we conclude

that the experimental studies of the DPS distributions at large values of ∆Y can potentially give

access to the various partonic correlations and provide a deeper insight into the dynamics of the

proton’s constituents.
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Figure 4.4: Upper panel: comparison between leading jet p⊥ distributions for four-jet DPS events pro-
duced with GS09 dPDFs and “naive” dPDFs. Lower panel: comparison between ∆Y = max|yi − yj |
distributions for four-jet DPS events produced with GS09 dPDFs and “naive” dPDFs. Collision
energy is equal to

√
S = 7 TeV, p⊥ ∈ [35, 100] GeV, |y| < 4.7. Factorization and renormalization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. Statistical
errors are given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding DPS cross section and Ntot is total number of bin entries for a given histogram.
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Figure 4.5: Upper panel: comparison between leading jet p⊥ distributions for four-jet DPS events pro-
duced with GS09 dPDFs and “naive” dPDFs. Lower panel: comparison between ∆Y = max|yi − yj |
distributions for four-jet DPS events produced with GS09 dPDFs and “naive” dPDFs. Collision
energy is equal to

√
S = 7 TeV, p⊥ ∈ [20, 100] GeV, |y| < 4.7. Factorization and renormalization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. Statistical
errors are given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding DPS cross section and Ntot is total number of bin entries for a given histogram.
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Figure 4.6: Upper panel: comparison between leading jet p⊥ distributions for four-jet DPS events pro-
duced with GS09 dPDFs and “naive” dPDFs. Lower panel: comparison between ∆Y = max|yi − yj |
distributions for four-jet DPS events produced with GS09 dPDFs and “naive” dPDFs. Collision
energy is equal to

√
S = 13 TeV, p⊥ ∈ [35, 100] GeV, |y| < 4.7. Factorization and renormalization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. Statistical
errors are given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding DPS cross section and Ntot is total number of bin entries for a given histogram.
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Figure 4.7: Upper panel: comparison between leading jet p⊥ distributions for four-jet DPS events pro-
duced with GS09 dPDFs and “naive” dPDFs. Lower panel: comparison between ∆Y = max|yi − yj |
distributions for four-jet DPS events produced with GS09 dPDFs and “naive” dPDFs. Collision
energy is equal to

√
S = 13 TeV, p⊥ ∈ [20, 100] GeV, |y| < 4.7. Factorization and renormalization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. Statistical
errors are given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding DPS cross section and Ntot is total number of bin entries for a given histogram.
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4.7 Simulation of the SPS background

In this section we discuss the way we simulate production of four-jet SPS events for the comparison

against four-jet DPS events generated with our code. Namely, we discuss the generation of four-jet

SPS events with the MadGraph [254] and the ALPGEN [253] event generators. Both codes use

LO matrix elements to generate events. However, NLO corrections may significantly affect LO

results. The total cross section for the four-jet SPS production at NLO accuracy level was at the

first time was evaluated by Bern et al. [250] in 2011. The study of Bern et al. demonstrated that

the total four-jet SPS cross section evaluated at NLO accuracy level is about two times smaller

than the total four-jet SPS cross section evaluated at LO accuracy level. One year later Badger et

al. [251] confirmed results of [250] and, in addition to the total four-jet SPS cross section, provided

differential distributions. Moreover, Badger et al. found that the ratio between differential NLO

and LO distributions demonstrates a mild dependence on rapidities and transverse momenta of

produced jets7 and is approximately equal to 0.5, see Fig. 4.8. In practice it is handy to encapsulate

the impact of NLO corrections into a so called K-factor defined as a ratio of an NLO cross section

(NLO distribution) to a LO cross section (LO distribution). Therefore, in the following, in order to

account for the NLO effects in our SPS simulations we will multiply our LO SPS distributions by

KSPS
NLO = 0.5. In Fig. 4.9 we compare p⊥-distributions of jets generated with the ALPGEN event

generator against the data measured by the CMS collaboration [108]. We see that the LO SPS

distributions without KSPS
NLO, in general, provide to much activity, especially for high p⊥-bins, and

that multiplication of the differential distributions by KSPS
NLO = 0.5 leads to a fairly well description

of data8. However, as we have argued in section 4.5, in the case of the four-jet DPS production the

impact of NLO corrections on LO DPS distributions is unknown due to the absence of NLO DPS

computations. Therefore, we do not use K-factors in our DPS simulations.

In the next section we present our study of the interplay between DPS and SPS contributions to

the four-jet production. Typically in experimental measurements of the four-jet production one

imposes different p⊥ cuts on produced jets. For example, the jet distributions shown in Fig. 4.9

were measured for the following p⊥-cuts: p1,2⊥ > 50 GeV and p3,4⊥ > 50 GeV where pi⊥ is a

transverse momentum of the i’th jet. However, as it was shown by Maciu la and Szczurek in [230],

the DPS contribution to the four-jet production is suppressed for this set of p⊥-cuts. In order to

increase the strength of the DPS signal Maciu la and Szczurek proposed a new set of cuts where all

four jets are required to have transverse momenta in the same p⊥ interval. Since the four-jet SPS

production typically results in one high-p⊥ jet and three jets with softer transverse momenta these

cuts should suppress the SPS contribution to the four-jet production. Contrary to the SPS case the

DPS contribution to the four-jet production gives two di-jet pairs with approximately the same

values of transverse momenta, see Fig. 4.1. Therefore, we will simulate the four-jet production for

two combinations of p⊥-cuts (p⊥ ∈ [35, 100] GeV and p⊥ ∈ [20, 100] GeV) and two different collision

energies (
√
S = 7 TeV and

√
S = 13 TeV) as listed in Table 4.3.

Finally, before closing this section, we shall note that in the ALPGEN event generator the

four-jet SPS production pp
SPS−−→ 4j is approximated by production of two jets and two gluons

7We shall note that differential distributions in [251] were simulated without parton shower effects. To combine
NLO matrix elements with parton shower generators is a non-trivial task and, to the best of our knowledge, current
state-of-the-art is a three-jet production at NLO combined with parton shower generators, see [252].

8The same value of KSPS
NLO was used in the study of Maciu la and Szczurek [230].
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as pp
SPS−−→ 2j + 2g. In order to estimate the error due to this approximation in Fig. 4.10 we

compare distributions of events for pp
SPS−−→ 4j and pp

SPS−−→ 2j + 2g processes9. We see that the

difference between total cross sections for the complete SPS four-jet production σ4j
SPS = 137.74

and the approximate one σ2j+2g
SPS = 130.92 is about 5%. We also shall note that the leading jet p⊥

and ∆Y distributions generated according to pp
SPS−−→ 2j + 2g and pp

SPS−−→ 4j processes differ by

rather a constant quantity for the whole range of binning, see Fig. 4.10. This behaviour of the SPS

distributions differs from the behaviour of corresponding DPS distributions where the difference

between leading jet p⊥ distributions generated according to pp
DPS−−−→ 2j + 2g and pp

DPS−−−→ 4j

processes may reach 10% level and the difference between ∆Y distributions generated according

to pp
DPS−−−→ 2j + 2g and pp

DPS−−−→ 4j processes may reach 30% level, see Fig. 4.3. In order to be

consistent with our four-jet DPS simulations, in the following we will simulate the four-jet SPS

production for the complete four-jet final state.
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Figure 4.8: Comparison between LO and NLO four-jet SPS distributions. Fixed order in perturbation
theory. Left panel: leading jet p⊥ distribution. Right panel: leading jet rapidity distributions. The
plot is taken from [251].

9Since with ALPGEN one can generate four-jet events only according to the approximate process pp
SPS−−→ 2j + 2g

we use MadGraph event generator to generate SPS events according to pp
SPS−−→ 4j and pp

SPS−−→ 2j + 2g processes.
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Figure 4.9: Comparison between ALPGEN and the CMS data [108] measured at
√
S = 7 TeV for

the following cuts: p1,2⊥ > 50 GeV, p3,4⊥ > 20 and |y| < 4.7. In the ALPGEN simulations the
factorization and renormalization scales are set to the average transverse momenta of the final state
produced jets (iqopt = 2), the minimal value of the transverse momentum of a jet (ptjmin) is
20 GeV, the minimal distance between jets (rjmin) is set to 0.5. The collision energy

√
S = 7 TeV.

The CTEQ6L1 PDF set [109].
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Figure 4.10: Comparison between distributions for the pp
SPS−−→ 2j + 2g, pp

SPS−−→ 4j processes
generated with the MadGraph event generator. MSTW2008 LO PDFs. Both factorization and

renormalization scales are set to Q = 1
2

∑4
i=1

√
p2
⊥,i. Only first 4 flavours (considered as massless).

We use the following cuts: pi⊥ ∈ [35, 100] GeV, |yi| < 4.7, minimal distance between final state
partons drjj is set to 0.5. Upper panel:distribution in terms of the leading jet p⊥. Lower panel:
distribution in terms of the maximal rapidity difference ∆Y = max|yi − yj |. Statistical errors are
given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a corresponding

DPS cross section and Ntot is total number of bin entries for a given histogram.
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4.8 Four-jet DPS production versus four-jet SPS production

In this section we compare our four-jet DPS simulations against four-jet SPS simulations performed

with the MadGraph code [254]. The LO matrix elements for the four-jet SPS production are known

to be IR-divergent in case of production of soft and collinear final state particles and hence require

certain regularization procedure. In the MadGraph code the LO four-jet SPS matrix elements

are regularized by imposing a cut on a minimal allowed distance ∆R =
√

(φi − φj)2 + (ηi − ηj)2

between final state particles which is controlled by the value of the parameter drjj. In our four-jet

SPS simulations we set drjj = 0.5. In order to approximately account for NLO effects in our

four-jet SPS simulations we use KSPS
NLO = 0.5 as we have argued in the previous section.

In Table 4.3 we list DPS and SPS contributions to the four-jet cross section for two different

collision energies and two different sets of p⊥-cuts. We see that the fraction of the DPS cross

section in the total (DPS + SPS) four-jet cross section increases if the collision energy
√
S grows

or if the transverse momenta of all four jets become softer. We also see that the fraction of DPS

cross section in total four-jet cross section may reach almost 80% for production of four jets with

p⊥ ∈ [20, 100] GeV at
√
S = 13 TeV. This enhancement is due to the increase in collision energy

and the presence of p⊥-cuts we use. The growth of the collision energy with fixed hard scale Q

allows to probe lower values of Bjorken-x which, in turn, increases the total cross section due to

the increase of parton densities. The p⊥-cuts we use lead to suppression of the SPS cross section

since the typical configuration of four-jet events produced via SPS mechanism is given by one hard

jet and three softer jets, see Fig. 4.1. Contrary to the the SPS case the DPS production leads

to two pairs of di-jets with approximately the same values of transverse momenta which implies

that the aforementioned p⊥-cuts do not lead to a strong suppression of the DPS at low values of

transverse momenta of produced di-jets. Moreover, because the t̂-channel of the LO di-jet cross

sections becomes proportional to ∼ 1/p4
⊥ as the absolute value of the transverse momentum p⊥

decreases, the DPS cross section, in turn, increases as the low p⊥-cut becomes softer. The difference

in the value of the DPS and SPS cross sections, obviously, has to also manifest itself in differential

distributions. In Fig. 4.11 - Fig. 4.14 we present our simulations for the four-jet DPS and SPS

production. In Fig. 4.11 we compare the leading jet p⊥ and ∆Y distributions for four-jets produced

via DPS and SPS mechanisms at
√
S = 7 TeV and p⊥ ∈ [35, 100] GeV. We see that DPS distribution

dominate over the SPS distribution for the small values of transverse momentum of the leading jet,

as shown in the upper plot of Fig. 4.11, and for the large values of the maximal rapidity separation

∆Y > 6, as shown in the lower plot of Fig. 4.11. These effects become stronger if one decreases the

value of the low p⊥-cut. In Fig. 4.12 we show leading jet p⊥ and ∆Y DPS and SPS distributions

for four jets with p⊥ ∈ [20, 100] GeV at
√
S = 7 TeV. We see that the difference between leading

jet p⊥ DPS and SPS distributions becomes stronger at small values of transverse momenta and

that the ∆Y DPS distribution now dominates over corresponding SPS distribution starting from

∆Y > 4. The growth of collision energy, in turn, leads to the increase of the DPS cross section and

to the enhancement of the effects we discussed, compare Fig. 4.11 with Fig. 4.13 and Fig. 4.12

with Fig. 4.14. We also shall note that the ∆Y DPS distribution generated for p⊥ ∈ [20, 100] at√
S = 13 TeV dominates over the corresponding SPS distribution over the whole range of binning,

see the lower plot of Fig. 4.14.

Our results agree with the results of Maciu la and Szczurek [230] at qualitative level. Namely,
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in Ref. [230] the DPS contribution to the total (DPS + SPS) cross section for the four-jet

production at
√
S = 7 TeV and p⊥ ∈ [35, 100] GeV was found to be equal to 42% (our result

is 40%). The contribution of DPS to the total (DPS + SPS) cross section for the four jet

production at
√
S = 7 TeV and p⊥ ∈ [20, 100] GeV in Ref. [230] was found to be equal to 70%

(our result is 68%). The comparison between ∆Y distributions given in Fig. 4.11 and Fig. 4.12

and corresponding distributions from [230] is given in Fig. 4.15. We see that the four-jet ∆Y

distributions given in Fig. 4.11 and Fig. 4.12 demonstrate the same behaviour as the distributions

from [230]. Unfortunately, in Ref. [230] many important details of DPS and SPS simulations, e. g.

choice of factorization and renormalizetion scales, choice of PDFs etc., were not provided which

makes a quantitative comparison between our results and results given in [230] impossible. We also

shall note that, as we have discussed in section 4.7, the approximation of the complete four-jet

SPS production process pp
SPS−−→ 4j by pp

SPS−−→ 2j + 2g gives about 5% difference for the total

cross sections. In Ref. [230] the ALPGEN event generator was used to simulate the four-jet SPS

production which means that in [230] the SPS events were generated according to pp
SPS−−→ 2j + 2g

process. However, in our simulations we use complete four-jet SPS production pp
SPS−−→ 4j as

implemented in MadGraph event generator. This different approach to the generation of SPS events

can partially explain the discrepancies between our results and results from [230]. For example, if

we evaluate the DPS contribution to the four-jet production at
√
S = 7 TeV and p⊥ ∈ [35, 100] GeV

using the SPS cross section for the pp
SPS−−→ 2j + 2g process we get

100× σDPS

σDPS + KSPS
NLOσ

2j2g
SPS

≈ 41%, (4.26)

where σ2j2g
SPS = 130.92 nb is a total LO SPS cross section evaluated for the process pp

SPS−−→ 2j + 2g

at
√
S = 7 TeV and p⊥ ∈ [35, 100] GeV, σDPS = 45.35 nb is a DPS cross section evaluated for the

same cuts and collision energies and KSPS
NLO = 0.5, as explained in section 4.7. Therefore, we see that

if we switch from exact four-jet SPS production to the approximate one we get a better agreement

with results given in [230].

Cuts and collision energy
σSPS for

pp
SPS−−→ 4j process

σDPS for

pp
DPS−−−→ 4j process

σDPS/ (σDPS + σSPS)

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
69.08 45.45 39.68 %

√
S = 7 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
1874.99 3912.27 67.60 %

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [35, 100] GeV
290.18 347.13 54.47 %

√
S = 13 TeV, |y| < 4.7,

p⊥ ∈ [20, 100] GeV
6670.53 22898.67 77.44 %

Table 4.3: Comparison between the DPS cross sections evaluated for pp
SPS−−→ 4j and pp

DPS−−−→ 4j
processes. For the DPS computations we used “naive” dPDFs constructed out of MSTW2008
LO PDFs and for the SPS computations we used MSTW2008 LO PDFs. All cross sections are
given in nb. The factorization and renormalization scales are set to: a) DPS Q1,2 = |p⊥,1,2|, b) SPS

Q = 1
2

∑4
i=1

√
p2
⊥,i. The SPS cross sections are multiplied by KSPS

NLO = 0.5.
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We also shall note that in the simulations given in [230] the impact of parton shower effects

was neglected. In sections 4.9 - 4.11 we discuss how one can improve the phenomenological study

presented in this section by adding the ISR and FSR effects to our simulations.
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Figure 4.11: Upper panel: comparison between leading jet p⊥ distributions for four-jet SPS and
DPS events. Lower panel: comparison between ∆Y = max|yi−yj | distributions for four-jet SPS and
DPS events. Collision energy is equal to

√
S = 7 TeV, p⊥ ∈ [35, 100] GeV, |y| < 4.7. Factorization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. The SPS
distributions were multiplied by KSPS

NLO = 0.5. Statistical errors are given by σDPS

√
Nbin/Ntot where

Nbin is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is
total number of bin entries for a given histogram.
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Figure 4.12: Upper panel: comparison between leading jet p⊥ distributions for four-jet SPS and
DPS events. Lower panel: comparison between ∆Y = max|yi−yj | distributions for four-jet SPS and
DPS events. Collision energy is equal to

√
S = 7 TeV, p⊥ ∈ [20, 100] GeV, |y| < 4.7. Factorization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. The SPS
distributions were multiplied by KSPS

NLO = 0.5. Statistical errors are given by σDPS

√
Nbin/Ntot where

Nbin is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is
total number of bin entries for a given histogram.
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Figure 4.13: Upper panel: comparison between leading jet p⊥ distributions for four-jet SPS and
DPS events. Lower panel: comparison between ∆Y = max|yi−yj | distributions for four-jet SPS and
DPS events. Collision energy is equal to

√
S = 13 TeV, p⊥ ∈ [35, 100] GeV, |y| < 4.7. Factorization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. The SPS
distributions were multiplied by KSPS

NLO = 0.5. Statistical errors are given by σDPS

√
Nbin/Ntot where

Nbin is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is
total number of bin entries for a given histogram.
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Figure 4.14: Upper panel: comparison between leading jet p⊥ distributions for four-jet SPS and
DPS events. Lower panel: comparison between ∆Y = max|yi−yj | distributions for four-jet SPS and
DPS events. Collision energy is equal to

√
S = 13 TeV, p⊥ ∈ [20, 100] GeV, |y| < 4.7. Factorization

scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. The SPS
distributions were multiplied by KSPS

NLO = 0.5. Statistical errors are given by σDPS

√
Nbin/Ntot where

Nbin is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is
total number of bin entries for a given histogram.
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Figure 4.15: Comparison between our simulations of four-jet production via DPS and SPS mechanism
against simulations performed in [230]. Our results are given by plots a) and b), the results from
[230] are given by plots c) and d).
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4.9 Pythia and “double” Les-Houches files

In section 4.6 and section 4.8 we have presented our parton-level simulations of the four-jet DPS

production in pp collisions. We have identified regions of the DPS phase space where the difference

between GS09 and “naive” dPDFs can significantly affect the ∆Y differential distributions. We also

have studied the interplay between DPS and SPS four-jet production in a way similar to the study

of Maciu la and Szczurek [234]. However, in [234] the impact of the initial and final state radiation

was neglected. Such approach leads to two important consequences. First of all it effectively reduces

a set of DPS-sensitive observables to the transverse momenta of produced jets and the maximal

rapidity difference ∆Y. Since without initial and final state radiation effects we have to deal with

production of a pair of di-jets with exactly back-to-back jets, the DPS-sensitive variables based upon

p⊥-momenta imbalance and angular correlations between produced jets cannot be applied in the DPS

analysis. For example, the transverse momenta imbalance variable ∆ij =
∣∣pi + pj

∣∣ / (|pi|+ |pj |)
would always be equal to zero for exact back-to-back jets. Secondly, the initial and final state

radiation may lead to a strong difference between distributions of partonic events and distributions

of jets.

In this section we describe how one can combine our DPS code with the Pythia event generator,

discuss modifications to the LHEF standard [81] and the Pythia code necessary to and ISR and

FSR effects to our DPS stimulations. We also present technical checks of these modifications.

In the Pythia framework one can use its MPI model [258] - [262] to produce DPS events.

However, according to the MPI model of Pythia all MPI events are strictly ordered in transverse

momentum, see review [263]. It would imply that in a four-jet DPS event produced via MPI

mechanism the jets produced via second hard interaction will “always” have transverse momenta

smaller than jets produced via first hard interaction. This ordering in transverse momentum is

necessary to combine MPI events with initial and final state radiation and to get a correct shape

of charged multiplicity distributions, see [263]. However, it is not suitable for DPS modelling.

Therefore, starting from Pythia version = “8” [256], [256] a possibility to always have two hard

interactions was implemented. This mode can be activated by setting SecondHard:generate = on

during the initialization of Pythia. The usage SecondHard:generate = on will imply that roughly

half of the time the second hard process will appear with the transverse momentum higher than the

first one. One can also combine SecondHard:generate = on with PartonLevel:MPI = on to add

a sequence of MPI events on top of a generated DPS event10.

We see that the combination of parton-level DPS events generated with our DPS code with

the Pythia event generator in the DPS mode would allow to add ISR and FSR effects to our

DPS simulations. Therefore, in order to do that, one would have to first generate LHE files

with our DPS code and then supply them to Pythia to add ISR and FSR effects. However, this

procedure requires the extension of the LHEF standard as well as some modifications to the files

Pythia.cc, ProcessContainer.cc and PartonLevel.cc of the Pythia code version = “8.240”.

The modifications to the Pythia code and the LHEF standard are given in Appendix G.

After introducing the aforementioned modifications to the Pythia code and the LHEF standard

one can read DPS events from the LHE files and add initial and final state radiation on top

of them. We check the implementation in the following way: first we generate four-jet DPS

10In Chapter 6 we will discuss in more details the differences between DPS and MPI modelling in Pythia.
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events at collision energy
√
S = 13 TeV with Pythia in the DPS mode using settings shown in

Table 4.4. In our simulations we use MSTW2008 LO PDF set [298]. In order to speed up the

generation procedure we restrict the phase space by setting PhaseSpace:pTHatMin = 20 GeV and

PhaseSpace:pTHatMax = 40 GeV. This choice of p⊥ cuts is not realistic, however, allows to collect

high statistics necessary for our checks relatively quickly. In order to reconstruct jets we use the

FastJet [220] core implemented into Pythia and the anti-kt jet clustering algorithm [221] with

jet parameters: ηmax = 4.7, R = 0.8 and pT, jet min = 10 GeV. After finishing the generation of

events in the standalone mode we perform a check of the modifications given in Appendix G. These

modifications affect only the parts of the code used to initialize Pythia while reading DPS events

from the LHE files. Therefore, in order to check them, we first use Pythia to create the LHE files

with the same number of DPS events as we generated in the standalone mode. After creating the

LHE files we supply them to Pythia and perform the same simulation as in the standalone mode.

If the DPS distributions produced with Pythia in the standalone mode coincide with the DPS

distributions produced by supplying LHE files with DPS events to Pythia, then it means that the

modifications listed in Appendix G work properly and that we can use modified Pythia to “shower”

parton-level DPS events produced with our DPS code.

The results of the aforementioned comparison are given in Fig. 4.16 and Fig. 4.17. We see that

the DPS distributions produced in the standalone mode and the DPS distributions produced out of

LHE files with DPS events practically coincide (see the ratio plots below the histograms) which

implies that with the aforementioned modifications Pythia can successfully read DPS events out of

LHE files and “shower” them.

Pythia Master Switch Value

HardQCD:all on

SecondHard:generate on

SecondHard:TwoJets on

PartonLevel:ISR on

PartonLevel:FSR on

PartonLevel:MPI off

HadronLevel:all off

Table 4.4: Pythia settings we use to check that reading and showering of the DPS events from the
LHE files was performed properly.
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Figure 4.16: Check of the modifications of the Pythia’s code. Here we compare four-jet DPS events
produced with Pythia in a stand alone mode against DPS events produced out of the modified LHE
files. Distribution in terms of the transverse momenta imbalance ∆12 = |p1 + p2| / (|p1|+ |p2|) of
two hardest jets.
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Figure 4.17: Check of the modifications of the Pythia’s code. Here we compare four-jet DPS events
produced with Pythia in a stand alone mode against DPS events produced out of the modified
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4.10 Technical aspects of the four-jet simulations.

In section 4.9 we have described modifications to the Pythia 8.240 code necessary to read DPS

events from LHE files and to add initial and final state radiation effects on top of the DPS events.

In section 4.11 we discuss how strongly initial and final state radiation affect results presented

in section 4.8. However, before doing that we have to discuss some important technical aspects

of four-jet DPS simulations. In the following we refer to the simulations presented in section 4.4,

section 4.6 and section 4.7 as to parton level simulations and to the simulations presented below as

to the the jet level simulations. We also call the events produced in the parton level simulations

and the jet level simulations as parton events and jet events correspondingly.

First of all, it is know that LO di-jet cross sections become divergent when transverse momenta

of the final state particles go to zero. Namely, at the low p⊥-values the contribution due to the

t̂-channel exchange scales approximately as ∼ 1/p4
⊥. This divergent behaviour can be explained by

the colour screening phenomenon: as the transverse momentum of the mediator in the t̂-channel

exchange becomes softer, its de Broglie wave-length becomes longer. This implies that at sufficiently

small p⊥-values the t̂-channel mediator will not be able to resolve colour charges of the individual

partons which indicates the failure of the interaction picture of point-like partons, see review [263].

Therefore, in order to be able to generate events, one has to regularize the low-p⊥ divergence.

In the MPI modelling of Pythia this is realized via a smooth damping around p⊥ ≈ 2 GeV [259].

This low-p⊥ damping is crucial for the MPI modelling, since the MPI processes typically lead to

production of many low-p⊥ particles. However, in the case of hard four-jet production the low-p⊥
divergence can be eliminated by a sharp p⊥ cut which we will call preg

⊥ . If one performs parton level

simulations one can arrange partons generated at the fixed order in perturbation theory into jets.

At this level of accuracy preg
⊥ can be set to the minimal jet pmin

⊥ cut as we have done in section

4.4, section 4.6 and section 4.7. However, if one wants to perform jet level simulations one cannot

anymore associate preg
⊥ cut with transverse momenta produced jets and its value has to be chosen

such that it does not affect jet level simulations. In section 4.11 we present our simulations for

the DPS production of four jets with transverse momenta in the range between 35 and 100 GeV.

Therefore, we set preg
⊥ = 20 GeV. We also shall note that because we move from the parton level

simulations to the jet level simulations the upper p⊥ cut in the parton level simulations has to be

removed. Instead, for the correct generation procedure, one has to perform first the parton level

simulations with p⊥ ∈ [preg
⊥ ,
√
S/2], then supply the resulted LHE file to Pythia, simulate initial and

final state radiation, reconstruct jets and only afterwards impose cuts on the transverse momenta

of the resulting jets. However, the time needed to generate unweighted parton level events grows

with the upper p⊥ cut. The reason is that at the high-p⊥ jet distributions are strongly suppressed

which means that, according to the hit-or-miss algorithm described in Chapter 3.1, one needs more

generation calls to generate high-p⊥ events. However, one can make generation time shorter by

imposing an additional high-p⊥ cut in the parton level simulations which we call pmax
⊥ cut. In this

case one has to make sure that the both preg
⊥ and pmax

⊥ cuts in the parton level simulations do not

affect the jet level simulations. The corresponding checks are shown in Fig. 4.18 where we compare

the leading jet p⊥ distribution for the jet level simulations performed by adding ISR and FSR

effects to three different sets of parton events generated in the p⊥-intervals p⊥ ∈ [20, 150] GeV,

p⊥ ∈ [20, 200] GeV and p⊥ ∈ [20, 250] GeV. We see that effects of the variation of the pmax
⊥ cut
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start to appear at the values p⊥ ∼ 150 GeV and that the leading-jet p⊥ distributions in the p⊥
range between 35 and 100 GeV are not affected by the values of pmax

⊥ cut. Therefore, for our jet

level simulations we will use LHE files with DPS events with p⊥ ∈ [20, 150] GeV and we will reject

all reconstructed jets with p⊥ outside of the interval between 35 and 100 GeV. Similar checks of

“stability” with respect to preg
⊥ and pmax

⊥ cuts can be performed for other relevant DPS distributions,

see Appendix I.
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Figure 4.18: Test of stability of the leading jet p⊥ distributions under the variation pmax
⊥ cut. Four-jet

DPS simulation performed for the collision energy
√
S = 13 TeV with naive dPDFs constructed out

of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal to Q1 = p1⊥,
Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first
and second hard processes in a given DPS event. Statistical errors are given by

√
Nbin where Nbin

is a number of events in a given bin. Upper panel: leading jet p⊥ distribution of the jets produced
by adding ISR and FSR effects to the parton level DPS simulations performed with pmax

⊥ = 150
GeV, pmax

⊥ = 200 GeV and pmax
⊥ = 250 GeV. Lower panel: same as in the upper panel but we show

only p⊥ interval between 20 and 110 GeV.
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Finally, before discussing our jet level DPS simulations, we have to comment on the connection

between ISR and the evolution of the dPDFs. A master equation for the ISR and FSR radiation

reads

t
∂

∂t

(
fi(x, t)

∆i(t)

)
=

1

∆i(t)

∑
j

∫
dz

αs(t)

2π
P̃i→j(z)fj(x/z, t), (4.27)

where P̃j→i(z) are unregularized LO DGLAP splitting functions, fi(x, t) is a collinear PDF of a

parton of a type i and ∆i(t) is a Sudakov form-factor defined as

∆i(t) ≡ exp

−∑
j

t∫
t0

dt′

t′

∫
dz

αs(t
′)

2π
P̃j→i(z)

 . (4.28)

A pedagogical introduction to the parton shower algorithms as well as the derivation of Eq. 4.27

and Eq. 4.28 can be found in [2], [78]. We do not provide here a detailed discussion of different

parton shower algorithms which is beyond the scope of this thesis. Instead we briefly discuss the

conceptual difference between ISR and FSR algorithms. Namely, in the Monte Carlo models of FSR

[85] - [91] the probability RFSR that a parton in a cascade will evolve from a lower scale t1 to the

higher scale t2 without resolvable branching is given by the ratio of two Sudakov form factors

RFSR =
∆(t2)

∆(t1)
. (4.29)

However, in the Monte Carlo models of ISR [92] - [93] the probability RISR to evolve backwards

from t2 to t1 depends not only on the ratio of Sudakov form factors but also one the ratio of PDFs.

The corresponding expression is given by

RISR =
∆(t2)

∆(t1)

f(x, t1)

f(x, t2)
. (4.30)

The aforementioned difference in the definition of probabilities RFSR and RISR implies that one

has to introduce new schemes for the Monte Carlo models of ISR effects in DPS processes. The main

obstacle here is the absence of sets of two-parton distribution functions obtained by the fit to the

experimental data. Moreover, even if we had sets of generalized two-parton distributions obtained

from the fit to the measured data we still would face the same problem in the modelling of MPI

processes. Therefore, in order to evaluate RISR for DPS processes one has to rely on some models of

two-parton distributions. A possible option would the GS09 dPDFs set [173], [174]. However, the

direct application of GS09 dPDFs to the ISR modelling is a non-trivial task due to the presence of

“1v2” splitting term on the RHS of Eq. 2.13. Therefore, a correct backward evolution has to account

for the “1v2” effects and for possible recombinations of two different ISR cascade into one single

ISR cascade as schematically shown in Fig. 4.19. A correct handling of such ISR evolution processes

in Monte Carlo event generators is a non-trivial task which still lacks a complete solution. Recently,

first results on combining ISR evolution which accounts for “1v2” effects and the impact parameter

depended distributions Γ(x1, x2, b, Q
2) from [200] were reported [211]. Since in our simulations we

use the Pythia event generator the dPDFs for the ISR will be modelled according to the original
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Figure 4.19: Schematic picture of the ISR in “1v2” DPS processes. Here thin lines represent emission
of partons during the backward ISR evolution.

Pythia’s algorithm [260]. In Chapter 6 we will describe the way Pythia models dPDFs in more

details. We will also provide a detailed comparison against GS09 approach. Here we shall just note

that the dPDFs modelled by Pythia account for momentum and number conservation. Therefore,

a combination of the DPS events produced with our code with the parton shower of Pythia can

be seen as an approximation where FSR effects are modelled correctly, ISR effects are modelled

approximately and the hard DPS process is modelled as in section 4.6 either with “naive” or GS09

dPDFs. We suggest that our results can be used as a baseline for comparison against recently

reported results of [211]. Such combined study may help to estimate the relative impact of different

effects which affect DPS, e. g. dDGLAP evolution effects, correlations in momentum and flavour

and “1v2” splitting effects.

4.11 Impact of the initial and final state radiation

In this section we present our study of the impact of the ISR and FSR effects on our parton level

DPS simulations. Let us consider first leading jet p⊥ DPS distributions. We expect that the ISR

and FSR effects will lead to an increase of activity for high-p⊥ bins due to the redistribution of

transverse momenta caused by the parton shower as schematically shown in Fig. 4.20 where the

arrows represent redistribution of transverse momenta among different p⊥-bins. More precisely,

the jet reconstruction procedure leads to a redistribution of particles created by different evolution

cascades. It implies that a certain number of the reconstructed leading jets acquire more transverse

momenta due to the particles captured from other jets and approximately the same amount of

the reconstructed leading jets loose some transverse momenta due to the particles which “escape”

from the jet cone. If we had had a uniform p⊥-distribution, then all bins, apart from those close

to preg
⊥ and pmax

⊥ , would have not been affected by the ISR and FSR effects. However, in each

collision, it is less likely to produce high-p⊥ particles than the low-p⊥ ones. It means that the parton

level p⊥-distributions decrease as p⊥ grows. Therefore, the redistribution of transverse momenta

as shown in Fig. 4.20 will add more activity to the high-p⊥ bins since the N ’th p⊥-bin will get

more transverse momenta from the (N − 1)’th p⊥-bin than it will transmit to the (N + 1)’th p⊥-bin.

Obviously, in p⊥-bins close to the preg
⊥ -cut, the aforementioned redistribution of transverse momenta
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provides less activity for the reconstructed jets. The reason is that the jet reconstruction can create

some jets with p⊥ smaller than preg
⊥ which implies that some events will “leak” below the preg

⊥ -cut

as shown in Fig. 4.18 where the jet reconstruction created some jets with p⊥ = 10 GeV which is

below the regulating cut preg
⊥ = 20 GeV. It implies that for the p⊥-bins close to preg

⊥ the parton level

p⊥-distributions will exceed the jet level distributions. Such bins are affected by boundary effects

and have to be excluded out of consideration.

In the upper plot of Fig. 4.21 we compare leading jet p⊥ DPS distributions with and without

parton shower effects. In order to perform this simulation we created first a Les-Houches file with

DPS events and then supplied it to the Pythia event generator to add ISR and FSR effects to

our parton-level DPS simulations. The modifications to the LHEF standard and Pythia’s code

necessary for the aforementioned simulation are described in Appendix G and their checks are

presented in section 4.9. The Les-Houches file contains DPS events generated at
√
S = 13 TeV

with p⊥ ∈ [20, 150] GeV and |η| < 4.7. In order to simulate ISR and FSR effects we use the Pythia

setup as in Table 4.4. In order to reconstruct jets we use the FastJet [220] core implemented into

Pythia and the anti-kt jet clustering algorithm [221] with jet parameters: ηmax = 4.7, R = 0.4.

and pT, jet min = 10 GeV. In order to exclude boundary effects due to the p⊥-cuts imposed in our

parton level simulations after the jet reconstruction we trigger on events with at least four-jets with

p⊥ ∈ [35, 100]. We see that in comparison with the parton level simulations the simulations with the

ISR and FSR effects lead to a higher activity for the high-p⊥ bins, see the upper plot of Fig. 4.21.

This result is in agreement with the dependence of the distributions of the reconstructed jets on the

p⊥-cuts imposed in the parton level simulations as shown in Fig. 4.18.

p⊥

E
v
e
n
ts

p
reg
⊥ pmax⊥

Figure 4.20: Schematic representation of the transverse momentum of jets due to the initial and
final state radiation effects.

Now, if we consider the impact of the parton shower effects on the ∆Y DPS distributions the

situation changes as shown in the lower plot of Fig. 4.21. For this simulation we have used the

same setup as for the simulations of the leading jet p⊥ distributions we just discussed. We see

that PS effects “bend down” the ∆Y distribution at high values of ∆Y. The reason is that the jet

reconstruction procedure will lead to some deviation of the reconstructed jets from the collision axis

which, in turn, leads to smaller rapidities and smaller values of ∆Y.

After having discussed the impact of the ISR and FSR effects on leading jet p⊥ and ∆Y DPS
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distributions we can study how the inclusion of the PS effects changes the results on comparison

between DPS and SPS contributions to the four-jet production presented in section 4.8. In Fig. 4.22

we compare the leading jet p⊥ distributions and ∆Y distributions of the SPS and DSP events after

parton showering. The SPS distributions were produced by supplying four-jet MadGraph events to

the Pythia event generator without performing merging procedure. We see that the ISR and FSR

effects do not spoil the separation between DPS and SPS events discussed in section 4.8, compare

Fig. 4.22 with Fig. 4.13.

The extension of the LHEF standard and modifications to the Pythia code as described in

Appendix G allow to study the interplay between DPS and SPS contribution for various differential

distributions which cannot be modelled without PS effects. As an example, in Fig. 4.23 we show

two such distributions, namely a distribution of the transverse momenta imbalance of two hardest

jets ∆12 and a distribution in the azimuthal angle between two di-jet planes ∆S defined as

∆S = arccos

(
pdi−jet

1 × pdi−jet
2

|pdi−jet
1 ||pdi−jet

2 |

)
, (4.31)

where p1 (p2) is a transverse momentum of the hard (soft) di-jet pair. In addition to the DPS

distributions generated with “naive” dPDFs we also plot DPS distributions generated with GS09

dPDFs. We see that DPS dominates over SPS at small and high values of ∆12 and at high values of

∆S. The increase of the DPS distributions at small values of ∆12 and high values of ∆S is due to the

production of two pairs of back-to-back di-jets which is more probable for DPS processes than for

SPS processes. The increase of the DPS distributions at high values of ∆12 is a jet reconstruction

effect. Namely, it means that the jet reconstruction resulted into two collinear jets with high

transverse momenta and two softer jets. We also see that both ∆12 and ∆S distributions do not

demonstrate dependence on the choice of the model of dPDFs strong enough to tell the impact of

“naive” dPDFs from the impact of GS09 dPDFs. Therefore, we conclude that the most sensitive to

GS09 dPDFs distributions is a distribution in terms of the maximal rapidity difference ∆Y, see Fig.

4.13. Later in Chapter 6 we will study the impact of different models of dPDFs on ∆Y distributions

in more details.
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Figure 4.21: Impact of the parton shower on leading jet p⊥ and ∆Y DPS distributions. Four-jet
DPS simulation performed for the collision energy

√
S = 13 TeV with “naive” dPDFs constructed

out of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal to Q1 = p1⊥,
Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first
and second hard processes in a given DPS event. Statistical errors are given by σDPS

√
Nbin/Ntot

where Nbin is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot

is total number of bin entries for a given histogram. The parton level DPS simulations performed
with preg

⊥ = 20 GeV and pmax
⊥ = 150 GeV.
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Figure 4.22: Upper panel: comparison between leading jet p⊥ distributions for four-jet SPS and
DPS events with and without PS effects. Lower panel: comparison between ∆Y = max|yi − yj |
distributions for four-jet SPS and DPS events with and without PS effects. Collision energy is
equal to

√
S = 13 TeV. We have selected events with at least four-jets with p⊥ ∈ [35, 100] GeV

and |y| < 4.7. Factorization and renormalization scales are equal to Q1 = p1⊥, Q2 = p2⊥, where
p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first and second
hard processes in a given DPS event. Statistical errors are given by σDPS

√
Nbin/Ntot where Nbin

is a number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is total
number of bin entries for a given histogram. The SPS distributions were multiplied by KSPS

NLO = 0.5.
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Figure 4.23: Comparison between ∆12 and ∆S distributions simulated with “naive” and GS09
dPDFs. Four-jet DPS simulation performed for the collision energy

√
S = 13 TeV with naive dPDFs

constructed out of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal
to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse
momentum in a first and second hard processes in a given DPS event. Statistical errors are given
by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a corresponding DPS

cross section and Ntot is total number of bin entries for a given histogram. The parton level DPS
simulations performed with preg

⊥ = 20 GeV and pmax
⊥ = 150 GeV. Upper panel: transverse momenta

imbalance ∆12 of two hardest jets. Lower panel: azimuthal angle between the two di-jet planes ∆S.
The SPS distributions were multiplied by KSPS

NLO = 0.5.
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4.12 Conclusions

In this chapter we have presented results of our phenomenological study of the four-jet DPS

production in pp collisions. In particular, we have estimated the impact of the momentum and

flavour correlations in the GS09 model on various differential DPS distributions. It was found that

the distributions in terms of the maximal rapidity difference ∆Y = max|yi−yj| produced with GS09

dPDFs significantly differ from the distributions produced with “naive” dPDFs at high values of ∆Y.

We also discussed how one can incorporate the ISR and FSR effects into our simulations and studied

their impact on the various differential distributions, in particular on the leading jet p⊥ and ∆Y

distributions. The inclusion of the ISR and FSR effects also made it possible to study the impact of

the GS09 dPDFs on differential distributions in the DPS-sensitive variables. We have found that the

variables based upon transverse momentum of produced jets, e. g. transverse momenta imbalance

∆ij , demonstrate mild dependence on the choice of the model of dPDFs. Finally, we performed a

comparison of the DPS and SPS distributions similar to the one performed by Maciu la and Szczurek

in [234]. Our results agree with the results of [234] at qualitative level, however, we shall note that

the absence of information in [234] about many important technical aspects of both DPS and SPS

simulations make the exact comparison impossible. In our four-jet analysis we studied the impact

of the ISR and FSR effects on our parton-level simulations and found that parton shower effects do

not spoil the separation of the DPS and SPS events produced at low-p⊥ or high-∆Y values as it

was predicted in [234]. We also should stress that our approach to study the impact of ISR effects

on our DPS simulations can be seen only as an approximations since it does not include a correct

backward evolution for the “1v2” DPS processes. The first results on the modelling of the ISR for

“1v2” DPS processes were recently reported [211]. The comparison between our DPS simulations

and the results of [211] would help to estimate the error due to the approximate modelling of the

ISR effects in our simulations.

The observed difference between ∆Y distributions simulated with GS09 and “naive” dPDFs

clearly requires more detailed investigation. Two potential sources of this difference are dDGLAP

evolution effects and partonic correlations in flavour (number). In Chapter 6 we will demonstrate

how one can approximately estimate the impact the flavour correlations by comparing the differential

distributions produced with GS09 dPDFs against differential distributions produced with the dPDFs

modelled by the Pythia event generator.

Finally, we argue that our study of the partonic correlations within the GS09 framework should

be considered rather as a qualitative identification of the regions of the DPS phase space which

can be interesting for further theoretical and experimental studies. Since many different models of

partonic correlations [192], [187], [159] [209] predict important contributions at high values of the

rapidity separation, the experimental study of the DPS events at high values of ∆Y will be able to

favour or disfavour some of these models and hence provide new information on the structure of

proton.
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Chapter 5

Four-jet DPS production in

proton-nucleus collisions

5.1 Enhancement of the DPS in proton-nucleus collisions

Here we summarize first phenomenological studies of different DPS contributions to a total DPS

cross section in pA collisions performed by Strikman and Treleani [213] and by Del Fabbro and

Treleani [214]. Historically, these were the first papers where enhancement of a total DPS cross

section was studied in detail. Later, the concepts established in [213], [214] got further developed

by Blok et al. in [216]. In Ref. [213] Treleani and Strikman considered two different DPS processes,

shown in Fig. 5.1 a), b). The process in Fig. 5.1 a) is a generalization of the “standard” “2v2” DPS

process in pp collisions to pA collisions. The process shown in Fig. 5.1 b), however, is new and

corresponds to the situation when the DPS occurs between one incident proton and two different

nucleons which are located within the same impact-parameter distance. In this section we will

give a short introduction to the formalism proposed by Treleani and Strikman in [213]. In the

following we will refer to the DPS processes shown in Fig. 5.1 a), b) as DPS I and DPS II processes,

correspondingly.

Since the DPS I and DPS II contributions involve different number of nucleons it is quite natural

to expect a different dependence of the corresponding total cross sections on the atomic mass number

A1. In 2001 Strikman and Treleani have published pioneering paper [213] where the expressions

for the total cross sections for DPS I and DPS II processes were derived for the first time. Within

their model a total DPS cross section for pA collisions, assuming no interference between DPS I

and DPS II processes, is written as a sum of two terms

σDPS
pA = σDPS

I + σDPS
II , (5.1)

where σDPS
I is expressed, neglecting the difference between proton and neutron, in terms of a total

1To the best of our knowledge, a similar, but somewhat different, assumption was first made by C. Goebel, F. Halzen
and D. M. Scott in 1980 [114]. Namely, it was postulated that total cross sections for DPS and “standard” QCD
processes in pA collision will have a different A-dependence. However, no distinction between DPS I and DPS II
contributions was made and corresponding expressions for total cross sections were not provided.

121
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a) b)

Figure 5.1: Schematic representation of some possible DPS processes in pA collision: a) DPS occur
between one incident proton and one nucleon. b) DPS occur between one incident proton and two
different nucleons.

DPS cross section for pp collisions as

σDPS
I = AσDPS

pp =
A

1 + δab

σaσb
σeff

, (5.2)

where σeff is an effective transverse interaction area of a proton. We use 1 + δab in the denominator

in order to reflect the fact that one has to divide the total cross section by 2 for production of two

indistinguishable final states. We see that σDPS
I scales simply as a total number of nucleons A. The

DPS II contribution, however, scales differently. The expression for σDPS
II was found to be equal to

σDPS
II =

1

1 + δab

A− 1

A
σaσb

∫
d2sT2

A(s) =
1

1 + δab
σaσb FpA, (5.3)

where we defined

FpA =
A− 1

A

∫
d2sT2

A(s) (5.4)

and the factor (A− 1)/A is a number of possible nucleon pairs A(A− 1) divided by the factor A2

which comes from the normalization of single nucleon density functions2, see Chapter 2.6 Eq. 2.107

and Eq. 2.125. The function TA is defined as

TA (s) =

∫
dz ρA (s, z) , (5.5)

where ρA (r) obeys a standard normalization condition∫
d3r ρA (r) = A. (5.6)

Note that only the DPS I contribution depends on σeff which, in turn, is sensitive to the partonic

correlations in a transverse plane of a hadron, see [215], [148] - [158] and the review [161].

2The factor (A− 1)/A was absent in the original publication of Strikman and Treleani [213]. It was also absent in
the paper of Del Fabbro and Treleani [214] which followed [213]. To the best of our knowledge, this factor appears
first in the paper of Frankfurt et al. [215] and a detailed derivation was later given in the paper of Blok et al. [216].
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Combining the DPS I and DPS II contributions together one can write Eq. 5.1 as

σDPS
pA = σDPS

pp (A + σeffFpA) . (5.7)

We see that within the approach of Strikman & Treleani one can express the difference between σDPS
pp

and σDPS
pA solely in terms of a geometrical quantity TA(s) which, in turn, depends on a distribution

of matter in a given nucleus. In order to perform numerical evaluations with this formula one

has to specify the nuclear matter density function ρA which we choose to have the shape of the

Woods-Saxon potential3

ρA (r) = ρ0
1 + ω (r/RA)2

1 + exp [(r −RA)/a]
, (5.8)

where RA is a nuclear radius, a is a length representing the “thickness” of the nuclear surface, ω

describes deviation from a spherical form and a value of ρ0 is fixed by the normalization condition

in Eq. 5.6. In the case of a spherical nucleus the Woods-Saxon nuclear matter density function

reduces to the Fermi distribution

ρA (r) =
ρ0

1 + exp [(r −RA)/a]
. (5.9)

For our computations within Strikman & Treleani framework we use values of parameters in Eq. 5.9

as implemented in the GLISSANDO 2 code [219]. Namely, for nuclei with mass numbers in the

range 4 ≤ A ≤ 208 we use Eq. 5.9 with

RA =
[
1.10A1/3 − 0.656A−1/3

]
fm, a = 0.459 fm, (5.10)

which corresponds to spherical nuclei with a nucleon-nucleon (NN) repulsion distance equal to

d = 0.9 fm [219].

Now we can evaluate A + σeffFpA. In order to do that we evaluate FpA according to Eq. 5.4

using the parametrization of the nuclear matter density given by Eq. 5.9 and Eq. 5.10. The

numerical integration in Eq. 5.4 is performed by means of the GSL [294] library. In order to

illustrate the dependence of the total DPS cross section on σeff we vary σeff in between 10 mb and

20 mb which agrees with most experimental studies of the four-jet DPS production, see Fig. 2.3. In

Fig. 5.2 we plot the ratio σDPS
pA /AσDPS

pp = 1 + 1
A σeffFpA as a function of A. In the absence of the

second term in Eq. 5.1 this ratio would always be equal to unity. However, we see that a total DPS

cross section for heavy nuclei in pA collisions is about 3A times bigger as the corresponding DPS

cross section in pp case. We also see that the variation of σeff leads to significant changes in the

behaviour of σDPS
pA /AσDPS

pp . Such numerical estimates were first made in [213] and the enhancement

∼ 3A was later given in [214] - [223].

3More precisely, Woods and Saxon used complex potential with real and imaginary components written as in
Eq. 5.9 but with different values of ρ0. Such potential was used to compute the differential cross section for elastic
scattering of protons by medium and heavy nuclei, see [218].
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Figure 5.2: Enhancement of the σDPS
pA with respect to σDPS

pp normalized according to the atomic mass
number A. Wood-Saxon (Fermi) form of the nuclear matter distribution ρA(r) with parameters
taken from [219].

It is handy to approximate a behaviour of the DPS enhancement factor σDPS
pA /AσDPS

pp as

1

A

σDPS
pA

σDPS
pp

= 1 + C1(A− 1)C2 + C3(A− 1)C4 , (5.11)

where the second term was added to correctly describe enhancement for heavy nuclei and coefficients

C1-C4 can be identified by a fitting Eq. 5.11 to our simulations, as it is shown in Fig. 5.2. This

fitting may look somewhat superfluous, since computations within Strikman & Treleani approach

are not time consuming, however, its advantage will become clear in Chapter 7 where we compare

predictions of Strikman & Treleani model and Monte Carlo simulations performed with the Pythia

event generator.

It is important to emphasize that, in principle, the different A-dependence of the two terms in Eq.

5.7 allows to distinguish between them experimentally, as it was proposed in [213]. Moreover, the

DPS II contribution does not involve σeff and hence does not depend on the partonic correlations

in the transverse plane of an incident proton. Therefore, a combined study of DPS processes in

both pp and pA collisions can be used to disentangle different sources of partonic correlations and

to answer the question if they are predominantly of longitudinal or transverse nature [213].

5.2 Generation of DPS events in pA collisions

Let us demonstrate how one can extend the analysis of the four-jet DPS production from Chapter 4

to the pA collision using the framework of Strikman & Treleani [213]. First of all we shall note that,

in general, the two terms in Eq. 5.1 correspond to integration over different x-regions and thus a

factorized form of a total DPS cross section given in Eq. 5.7 violates conservation of a longitudinal
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Figure 5.3: Enhancement of the σDPS
pA with respect to σDPS

pp normalized according to the atomic mass
number A evaluated with Eq. 5.7 (blue dots) and Eq. 5.14, Eq. 5.15 (green diamonds). Wood-Saxon
form of the nuclear matter distribution ρA(r) with parameters taken from [219]. Collision energy√
SNN = 5.02 TeV, with cuts on final sate partons p⊥ ∈ [35, 100] GeV and |yi| < 4.7. Here we have

used “naive” dPDFs constructed out of MSTW2008 LO PDFs.

momentum. It becomes clear if one writes down corresponding differential cross sections

σDPS
I =

A

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiDa1,a2/p(x1, x2)Db1,b2/p(x3, x4) σ̂a1,b1 σ̂a2,b2 , (5.12)

σDPS
II = FpA

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxiDa1,a2/p(x1, x2) fb1/p(x3) fb2/p(x4) σ̂a1,b1 σ̂a2,b2 , (5.13)

where fi/p(x1) are standard collinear PDFs, Di,j/p(x1, x2) are dPDFs as in Eq. 4.1 and we have

omitted factorization scale dependence for brevity’s sake. Also, in order not to overload our notation,

we omitted final state labels A and B for the partonic processes a1 b1 → A and a2 b2 → B as well

as the corresponding symmetry factor 1/ (1 + δAB). Assuming no correlations in x-space, Eq. 5.12
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and Eq. 5.13 can be written as

σDPS
I =

A

σeff

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi fa1/p(x1) fa2/p(x2) fb1/p(x3) fb2/p(x4) ×

× θ(1− x1 − x2) θ(1− x3 − x4) σ̂a1,b1 σ̂a2,b2 , (5.14)

σDPS
II = FpA

∑
a1,a2,b1,b2

∫ 4∏
i=1

dxi fa1/p(x1) fa2/p(x2) fb1/p(x3) fb2/p(x4) ×

× θ(1− x1 − x2) θ(x3) θ(x4) σ̂a1,b1 σ̂a2,b2 . (5.15)

We see that different kinematic constraints on Bjorken variables in Eq. 5.14 and Eq. 5.15 lead to

different integration regions which does not let us to write a total DPS cross section as in Eq. 5.7.

However, as it was argued in [213] the difference between two integrands in Eq. 5.14 and Eq. 5.15

should become relevant only for large x’es where dPDFs have relatively small values and, therefore,

their impact on a total DPS cross section is negligible. In order to check it, in Fig. 5.3 we show a

comparison between the enhancement factor σDPS
pA /AσDPS

pp evaluated with approximated expression

as in Eq. 5.7 and the exact expressions given by Eq. 5.14 and Eq. 5.15. One can see that the

difference between both approaches is negligible.

In order to estimate the difference between the differential distributions corresponding to the

DPS I and DPS II contributions we have implemented Eq. 5.14 and Eq. 5.15 into the code we

developed to study the four-jet DPS production in pp collisions. The factor FpA in Eq. 5.15 is

evaluated as described in section 5.1. For this check we study the ∆Y DPS distributions since, as

it was argued in Chapter 4, the DPS production of four jets at high values of ∆Y involves two

low-x and two high-x partons and, therefore, ∆Y DPS distributions can be sensitive to the different

kinematic constraints in Eq. 5.14 and Eq. 5.15. The results of our simulations are shown in Fig.

5.4 where we plot DPS I and DPS II ∆Y distributions normalized to unity. We see that both DPS

I and DPS II histograms have the same profiles within the statistical errors. It implies that even

at very high accuracy one can use the relation between σDPS
pA and σDPS

pp proposed by Treleani and

Strikman, Eq. 5.7, to relate four-jet DPS production in pp collisions and four-jet DPS production

in pA collisions.

In Fig. 5.5 we show our DPS and SPS simulations of the four-jet DPS production in pPb

collisions within the framework of Treleani and Strikman. We have used the same set of cuts as in

Chapter 4. The SPS distributions for pPb collisions were obtained by multiplying corresponding pp

SPS distribution by the atomic mass number of 208Pb. The DPS distributions for pPb collisions

were obtained by multiplying the corresponding pp DPS distributions by the enhancement factor

as in Eq. 5.7. The simulations presented in Fig. 5.5 were performed in the center of mass of the

proton-nucleon reference frame. In order to account for NLO effects in our SPS simulations we use

KSPS
NLO = 0.5, see Chapter 4.8.

Let us compare DPS and SPS distributions generated for pp collisions at
√
S = 7 TeV shown in

Fig. 4.11 against DPS and SPS distributions for pA collisions at
√
S = 5.02 TeV shown in Fig. 5.5.

Both distributions were generated for jets with p⊥ ∈ [35, 100] GeV and |y| < 4.7. We see that the

fraction of DPS events in the total (DPS + SPS) four-jet cross section for pA collisions at
√
S = 5.02

TeV is equal to 62% against 40% for the pp collisions shown in Fig. 4.11 and Table 4.3. By

comparing Fig. 4.11 and Fig. 5.5 we also see that DPS and SPS distributions are better separated
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for the pA collisions at
√
S = 5.02 TeV than for pp collisions at

√
S = 7 TeV. These effects are due

to the enhancement of the DPS cross section in pA collisions in Strikman & Treleani model. The

enhancement factor for 208Pb is almost 3.5A, as shown in Fig. 5.3, which strongly affects the ratio

σDPS
pA

/(
σSPS

pA + σDPS
pA

)
and leads to increase of the fraction of the DPS cross section.

10 6

10 5

10 4

10 3

10 2

10 1

1/
d

/d
Y

Events (DPS I + DPS II) =  1E7
CT14LO PDFs

S = 5.02 TeV
y [-4.7, 4.7]
p [35, 100] GeV

Four-jet DPS production: DPS I contribution
Four-jet DPS production: DPS II contribution

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9.4
Y

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

DP
S 

I /
 D

PS
 II

Ratio: DPS I / DPS II

Figure 5.4: Comparison between distributions for the σDPS
I and σDPS

II contributions. Collision energy√
SNN = 5.02 TeV, with cuts on final sate partons p⊥ ∈ [35, 100] GeV and |yi| < 4.7. Here we

have used naive dPDFs constructed out of CT14LO PDFs [299]. Factorization and renormalization
scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a
jet transverse momentum in a first and second hard processes in a given DPS event. Statistical
errors are given by σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding DPS cross section and Ntot is total number of bin entries for a given histogram.
Simulated for 208Pb nucleus. All distributions are normalized to unity.
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Figure 5.5: DPS in pA collisions within the framework of Treleani and Strikman. Upper panel:
comparison between leading jet p⊥ distributions for four-jet SPS and DPS events with included
parton shower effects. Lower panel: comparison between ∆Y = max|yi − yj | distributions for
four-jet SPS and DPS events with included parton shower effects. Collision energy is equal to√
SNN = 5.02 TeV. We have selected events with at least four-jets with p⊥ ∈ [35, 100] GeV and
|y| < 4.7. Factorization and renormalization scales are equal to Q1 = p1⊥, Q2 = p2⊥, where p1⊥
and p2⊥ are equal to the absolute value of a jet transverse momentum in a first and second hard
processes in a given DPS event. Statistical errors are given by σDPS

√
Nbin/Ntot where Nbin is a

number of events in a given bin, σDPS is a corresponding DPS cross section and Ntot is total number
of bin entries for a given histogram. The SPS distributions were multiplied by KSPS

NLO = 0.5.
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5.3 Impact of the nuclear PDFs

In section 5.2 we have discussed how one can extend the simulation of the four-jet DPS production

from pp to pA collisions according to the framework of Strikman & Treleani [213]. However, in

section 5.2, in order to simulate pA events according to Eq. 5.14 and Eq. 5.15, we have used

standard proton PDFs. The nuclear parton distribution functions (nPDFs), in general, may strongly

differ from proton PDFs due to the cold nuclear matter (CNM) effects. A common approach to

parametrize these effects is to introduce so called nuclear modification factors

RAi (x,Q2) =
fi/A(x,Q2)

fi/p(x,Q2)
. (5.16)

The schematic dependence of the nuclear modification factor RAi (x,Q2) on the Bjorken-x is shown

in Fig. 5.6.

Figure 5.6: Schematic picture of the nuclear modification factor RAi (x,Q2) as a function of Bjorken-x,
from [107].

In order to estimate the impact of the nPDFs on our DPS simulations one could, for example,

use Eq. 5.14 and Eq. 5.15 with a certain set of nPDFs or reweight the DPS distributions for pp

collisions with the nuclear modification factor as in Eq. 5.16. However, before doing that, several

important comments need to be made.

For our simulations in section 5.2 as well as for simulations in Chapter 4 we were using LO

PDFs together with LO partonic cross section as required by factorization theorem, see Chapter 1.4.

Since nuclear PDFs are less constrained by experimental measurements than proton PDFs we would

like to use a recent set of nuclear PDFs constrained by most of the available data4 for which the

associated proton PDFs are also available. The two most recent sets of nPDFs are CTEQ15 [300]

and EPPS16 [301] NLO nPDFs. The comparison between both sets is shown in Fig. 5.7. We

see that both sets within their uncertainties bands agree with each other. Therefore, in order to

estimate the overall impact of nPDFs on our DPS simulations, we will work with one particular set

of nPDFs which we choose to be CTEQ15 [300]. However, before presenting our simulations of DPS

in pA collisions with CTEQ15 PDFs, we want to estimate the impact due to using of NLO PDFs

with LO partonic cross sections on our analysis. In Table 5.1 we list the four-jet DPS cross sections

4The review of the state-of-the-art of nPDFs is given in [302].
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evaluated with the “naive” dPDFs constructed as in Eq. 4.3 out of different sets of single PDFs.

We see that the difference between the DPS cross sections evaluated with MSTW2008 [298] and

CT14 [299] LO PDFs is about 95%. The strong difference between DPS cross section evaluated with

different sets of LO PDFs is due to the fact that the LO gluon PDFs are not well constrained. As

shown in Fig. 4.2 the main contribution to the total four-jet DPS cross section comes from the DPS

processes involving gg → qq and qg → qg LO QCD processes which leads to strong discrepancies

between predictions made with different LO sets5. We also see that the difference between the DPS

cross sections evaluated with CT14 LO and CT14 NLO [299] PDFs is about 4%. Furthermore, we

see that the difference between total DPS cross sections evaluated with CT14 NLO and CTEQ15

NLO proton PDFs is about 2%.

Since we are interested in impact of nPDFs on differential DPS distributions we also have to

estimate the impact due to the usage of NLO PDFs with LO partonic cross sections on differential

DPS distributions. In the upper panel of Fig. 5.8 we compare the distributions of the four-jet DPS

events in terms of the maximal rapidity difference ∆Y. We have generated DPS events according to

Eq. 5.14 and Eq. 5.15 for three different “naive” dPDFs constructed out of CT14 LO, CT14 NLO

and CT15 NLO (proton) PDFs according to Eq. 4.3. The simulations presented in Fig. 5.8 were

performed in the center of mass of the proton-nucleon reference frame. We see that the difference

between distributions generated with CT14 LO and CT14 NLO sets grows with the value of ∆Y

and can reach about 60% for large values of ∆Y. We also see that the difference between DPS

distributions generated with CT14 NLO and CTEQ15 NLO (proton) sets may reach about 20%

difference for large values of ∆Y. The statistical errors for the distribution shown in Fig. 5.8 were

estimated separately for the distributions generated with Eq. 5.14 (DPS I distribution) and Eq. 5.15

(DPS II distribution) as σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a

corresponding cross section and Ntot is a total number of bin entries for a given histogram. The

error δDPS for the combined distributions shown in Fig. 5.8 was estimated as

δDPS =
σpA

DPS

NpA
tot

√
(δDPS I)

2 + (δDPS II)
2, (5.17)

where σpA
DPS is a total DPS cross section (DPS I + DPS II) in pA collisions, NpA

tot is a total number

of generated events, δDPS I and δDPS II are statistical errors for DPS I and DPS II distributions

correspondingly.

5We shall stress that these discrepancies do not cancel results of our DPS simulations with LO PDFs since they
were performed in a consistent way, as it is required by factorization theorem. However, the large uncertainties due to
the badly constrained LO gluon PDFs clearly indicate necessity of consistent NLO DPS computations. Recently a
significant progress in development of a consistent theoretical framework for NLO DPS computations was made, see
[177], [200] and [210]. However, a phenomenological application of results from [177], [200] and [210] is yet to be done.
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Figure 5.7: Nuclear modification factor RAi (x,Q2) as a function of Bjorken-x evaluated with CTEQ15
[300] and EPPS16 [301]. The plot is taken from [301].

PDF set MSTW2008 LO CT14 LO CT14 NLO CTEQ15 NLO (proton)

σDPS√
SNN = 5.02 TeV

Q1 = p1⊥, Q2 = p2⊥

p⊥ ∈ [35, 100] |y| < 4.7

9825.50 nb 5028.03 nb 5231.89 nb 5131.30 nb

Table 5.1: Total DPS cross sections for the four-jet DPS production in pA collisions evaluated with
different LO and NLO PDFs according to the approach of Strikman & Treleani.

After studying the impact of the different sets of proton PDFs on the Monte Carlo simulations of

the four-jet DPS production in the framework of Strikman & Treleani we estimate the overall impact

of the CNM effects encapsulated in nPDFs. In order to do that we reweight the DPS generated with

CTEQ15 NLO proton PDFs using the nuclear modification factor RAi (x,Q2) evaluated as the ratio

of CTEQ 15 NLO nPDFs to the corresponding CTEQ 15 NLO proton PDFs. The results are given

in the lower panel of Fig. 5.8. We see that the distributions generated with CTEQ15 NLO proton

PDFs and the reweighted distributions demonstrate about 20% of difference at large values of ∆Y.

However, as we have discussed before, the difference between CT14 NLO and CTEQ15 (proton)

NLO PDFs at the large values of ∆Y is of the same order of magnitude, compare upper and lower

plots in Fig. 5.8. Moreover, the comparison between DPS cross sections evaluated with proton and

nuclear CTEQ15 PDFs shows about 2% difference which means that the impact of CTEQ15 nPDFs

on the DPS cross section is the same as the impact due to the usage of different NLO PDFs, see

Table 5.1. Therefore, we conclude that the impact of nuclear PDFs on our simulations of four-jet

DPS production is very modest.
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Figure 5.8: Upper panel: comparison between distributions for the DPS distributions evaluated
with CT14LO [299], CT14NLO [299] and CT15NLO (proton) PDFs [300]. Lower panel: comparison
between distributions for the DPS distributions evaluated with CT15NLO (proton) and CT15NLO
(208Pb) [300] PDFs. Collision energy

√
SNN = 5.02 TeV, with cuts on the final sate partons

p⊥ ∈ [35, 100] GeV and |yi| < 4.7. Evaluated for 208Pb nucleus. Statistical errors are given by
σDPS

√
Nbin/Ntot where Nbin is a number of events in a given bin, σDPS is a corresponding DPS

cross section and Ntot is total number of bin entries for a given histogram.
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5.4 Conclusions

In this chapter we have studied the four-jet DPS production in pA collision within the framework

proposed by Strikman & Treleani [213]. We have demonstrated that effects due to the different

kinematic constraints for the DPS I and DPS II processes are negligible for the total DPS cross

sections and differential DPS distributions. Using the approach of Strikman & Treleani we have

studied the interplay between the DPS signal and the SPS background for the leading jet p⊥ and

∆Y differential distributions for the jet cuts used in Chapter 4. These simulations were performed

at
√
SNN = 5.02 TeV collision energy which should lead to decrease of the fraction of the DPS

events comparing to the pp collision energies we have considered in Chapter 4. Nevertheless, we

demonstrated that the enhancement of the DPS cross section in pA collisions predicted in [213]

compensates decrease of the fraction of the DPS due to decrease of collision energy. In fact, we

found that the enhancement of the DPS cross section for the proton-lead collisions at
√
SNN = 5.02

TeV leads to a better separation between the DPS and SPS contributions than the separation

between DPS and SPS contributions to four-jet production in pp collisions at
√
S = 7 TeV.

Apart from the studies of the interplay between the DPS signal and the SPS background in

pA collisions we also have estimated the overall impact of the CNM effects on the four-jet DPS

production. The estimate of the impact of the shadowing effect on the DPS cross section within

the framework of [303] was given in [213] and was found to be of the order of 10%. Our DPS

simulations, however, include the overall impact of the CNM effects from the nPDFs and, therefore,

a direct comparison between our simulations and results from [213] is not possible. We also argue

that overall impact of the nPDFs on our DPS simulations is of a compatible size with the impact

due to the usage of different PDF sets. Therefore, we conclude that the effects due to the nPDFs

appear to be less relevant than other theoretical uncertainties.

Finally, we should note that among the phenomenological studies of DPS in pA (AA) collisions

[222], [228], [224], [223], [225] the differential distributions of DPS events were discussed only in

[222]. However, the phenomenological studies of DPS in pA collisions definitely require realistic

Monte Carlo simulations. The simulations of DPS I and DPS II contributions as we have performed

in this chapter can be combined with the ISR and FSR models of the Pythia event generator in

the way we described in Chapter 4.9.
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Chapter 6

Four-jet DPS production in

proton-proton collisions within the

Pythia’s framework

6.1 Double parton scattering and multiple parton interactions in

Pythia event generator

We will start with a brief sketch of a formalism being used in the Pythia event generator [255],

[256] to model processes involving multiple parton interactions and, in particular, double parton

scattering. Current approach of Pythia to MPI events has a long history of development starting

from first models of MPI [258], [259] up to a very sophisticated model of Pythia 8 [260], [261],

[262]1. Here we will briefly sketch some particular features of the MPI model of Pythia essential for

the understanding of our results. Namely, we will describe the way Pythia models multiple parton

distribution functions (mPDFs) and, more specifically, dPDFs.

Before starting the description of the approach of Pythia let us note that, starting from Pythia

version 8, a possibility to always have two hard interactions in a given event was added (flag

SecondHard:generate = on). Moreover, this option allows to generate DPS events separately from

MPIs (with a flag PartonLevel:mpi = off). Therefore, there are two options to produce DPS

events with Pythia 8:

• With flags SecondHard:generate = on and PartonLevel:mpi = off which allows to collect

a good statistics for a relatively small number of calls.

• With flags PartonLevel:mpi = on and SecondHard:generate = off which requires a large

number of calls since the second interaction will always occur at sufficiently lower scale than

the first one.

In this section we will not distinguish between both methods even though they are quite different

in some aspects. Instead we will start with a description of some common concepts and discuss

corresponding differences later in this chapter.

1The review of the development of MPI modelling in the Pythia event generator is given in [263].
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A starting point is to generate the first hard 2→ 2 event according to

dσ

dp2
⊥

=
∑
ijk

∫
dx1dx2dt̂ f

i
raw(x1, Q

2) f jraw(x2, Q
2)
dσkij

dt̂
δ

(
p2
⊥ −

t̂û

ŝ

)
, (6.1)

where f iraw(x1, Q
2) and f jraw(x1, Q

2) are unmodified collinear PDFs.

After successful generation of the first hard event one has to generate other events due to

the subsequent interactions. In order to do that, Pythia dynamically modifies f iraw(x1, Q
2) and

f jraw(x2, Q
2) according to a history of all previous interactions in a given proton-proton collision. In

the first model of MPI Pythia could only preserve an overall conservation of energy and momentum

by reducing the value of Bjorken-x after each interaction according to

x′i =
xi

1−
i−1∑
j=1

xj

< 1, (6.2)

where x′i is the value of Bjorken-x used for the i’th interaction. For example, if i = 2 we have

x′2 =
x2

1− x1
< 1, (6.3)

which implies x1 + x2< 1 and thus effectively we have generated an MPI (DPS) event with a dPDF

being equal to

Dij(x1, x
′
2, Q

2) = f iraw(x1, Q
2) f jraw(x′2, Q

2). (6.4)

This approach, however, does not take into account changes in a quark content of a proton.

For example, if one selects a “valence” u-quark in the first hard interaction then, effectively, one is

left over with only one “valence” u-quark in a beam remnant. From the other side, if one probes

a u-quark PDF at low-x it means that with a high probability it originates from a perturbative

“1v2” splitting of a gluon into a quark-antiquark pair, which, in turn, implies that there is a leftover

“companion” antiquark which has to be included into a beam remnant. The effects due to the “1v2”

splitting, obviously, apply to all quark flavours. In Fig. 6.1 we sketch the MPI (DPS) “1v2” process

involving perturbative g → c c̄ splitting. Namely, in Fig. 6.1 a) we show a “1v2” MPI (DPS) process

where both c- and c̄-quarks originate due to the perturbative g → c c̄ splitting and in Fig. 6.1 b) we

show a “1v2” MPI (DPS) process where a c-quark originates due to a perturbative g → c c̄ splitting

and a c̄-quark originates from a “raw” c̄ PDF.

In 2004 the MPI model of Pythia was significantly improved. In particular a possibility to

handle the above-mentioned effects was added [260]. The starting point of the new approach is to

split PDFs into valence and sea parts as

f(x,Q2) = fval(x,Q
2) + fsea(x,Q

2), (6.5)

where the flavour-antiflavour symmetry is assumed. By comparing the ratio fsea(x,Q
2)/f(x,Q2)

against a random number R ∈ [0, 1] generated according to a uniform probability distribution one

can decide in a probabilistic way if a generated quark is either a “valence” or a “sea” one. Then, for
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Figure 6.1: Two different possibilities to select an antiquark in a second interaction: a) a c̄-quark
comes from a perturbative “1v2” spiting process g → c c̄, b) a c̄-quark comes from a “raw” c̄ PDF.

example, if in the first interaction we have selected a valence quark of a flavour f with a distribution

function qfv0(x,Q2) then we have to modify its PDF according to

qfvn(x,Q2) =
Nfvn

Nfv0

1

X
qfv0(x/X,Q2), (6.6)

where Nfv0 is an original number valence quarks of a flavour f and qfvn and Nfvn are distribution

and number of a valence quarks of the flavour f after n interactions correspondingly, X = 1−
n∑
i=1

xi

is a total momentum fraction already taken by previous interactions. One can see that modification

in Eq. 6.6 changes the standard number rule

1∫
0

dx qfv0(x,Q2) = Nfv0 (6.7)

to

1∫
0

dx qfvn(x,Q2) θ(X − x) =
Nfvn

Nfv0

X∫
0

dx

X
qfv0(x/X,Q2) = Nfvn. (6.8)

Equation 6.6 allows to account for changes in a number of valence quarks. However, it cannot

be used in a straightforward way since a subtraction of a valence quark also removes an average

momentum fraction carried by qfvn(x,Q2)

〈xfvn(Q2)〉 ≡

X∫
0

dxx qfvn(x,Q2)

X∫
0

dx qfvn(x,Q2)

= X

1∫
0

dxxqfvn(x,Q2) = X〈xfv0(Q2)〉, (6.9)

which is in contradiction with the momentum rule

X∫
0

dxx

(∑
i

qfn(x,Q2) + gn(x,Q2)

)
= X, (6.10)
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because Eq. 6.10 already accounts for removing a fraction of momentum
∑n

i xi. Therefore, removing

an additional average momentum fraction 〈xfv0(Q2)〉 will lead to momentum violation. In general,

〈xfv0(Q2)〉 is a scale-dependent quantity which also can differ for various PDF sets. However,

in order to facilitate a generation procedure, Pythia assumes a general functional form of this

dependence

〈xfv0(Q2)〉 =
Af

1 +Bf log (log (max(Q2, 1 GeV) /ΛQCD)
, (6.11)

where, neglecting the difference between various PDF sets, coefficient Af and Bf are found from the

fit to the CTEQ5L PDF set [269]. The quantity 〈xfv0(Q2)〉 is thus computed according to Eq. 6.11

and, in order to preserve Eq. 6.10, has to be compensated by a certain modification procedure of

sea and gluon PDFs which we will describe later in this section. However, before doing that let us

consider another important situation when a gluon splits perturbatively into a quark-antiquark pair

as shown in Fig. 6.1. We will see that such processes may also lead to a violation of momentum

conservation expressed by Eq. 6.10. Following the original notation of [260] we write

g → qs + qc, (6.12)

where we assume that a gluon is carrying a momentum fraction y, a sea quark qs is carrying a

momentum fraction xs and its companion qc, therefore, has a momentum fraction x = y− xs. Then,

according to [260], a PDF of a companion quark is

qc(x, xs) = C

1∫
0

dz g(y)Pg→qsqc(z) δ(xs − zy) =

= C Pg→qsqc(xs/y)
g(y)

y
=

= C Pg→qsqc

(
xs

xs + x

)
g(xs + x)

xs + x
, (6.13)

where Pg→qsqc
(

xs
xs+x

)
= 1

2

[
z2 + (1− z)2

]
and C is a normalization constant which is fixed by

1−xs∫
0

dx qc(x, xs) = 1. (6.14)

Note that in this particular case a structure of the splitting term on the RHS of Eq. 6.13 coincide

with a splitting term on the RHS of dDGLAP evolution equations, Eq. 2.13, up to a constant. One

can easily show it using the relation between standard DGLAP splitting kernels and “1v2” splitting

kernels in Eq. 2.14 which allows one to express PRg→q(z) via Pg→qq̄(z) as

PRg→q(z) =
∑
k

Pg→qk(z) = Pg→qq̄(z), (6.15)
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and since PRg→q(z) = Pg→q(z) we have

Pg→q(z) = Pg→qq̄(z) =
1

2

[
z2 + (1− z)2

]
. (6.16)

As a next simplifying step Pythia uses a following parametrization of a gluon distribution

g(x) ∼ (1− x)p

x
, (6.17)

where p is an integer by default set to 4. This parametrization allows to find an analytical expression

for the normalization constant C and thus for the companion quark distribution qc(x, xs). An

example of a distribution of companion quarks is given in Fig. 6.2. Using Eq. 6.13 and Eq. 6.17
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Figure 6.2: Companion quark distributions evaluated for different p and xs, from [260].

one can analytically compute an average momentum fraction introduced by a companion quark to a

beam remnant 〈xcn〉 = X〈xc0(xs)〉 which we do not show here since it is a rather lengthy function

of xs, see [260].

Now we have seen that modification of a number of valence quarks and modification of a

companion quark PDF leads to a negative contribution X〈xfv0(Q2) and a positive contribution

X〈xc0(xs)〉 to a total averaged momentum fraction. However, such contributions will violate the

momentum rule given by Eq. 6.10. The way to circumvent this issue is to let sea and gluon

distributions fluctuate in such a way that both contributions are compensated and the momentum

rule is preserved together with the number rules

X∫
0

dx qfvn(x,Q2) = Nfvn, (6.18)

X∫
0

dx qfcjn(x, xj) = 1,∀j. (6.19)
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In order to do that one changes the normalization of sea and gluon PDFs according to

qfs(x,Q
2)→ aqfs(x,Q

2), (6.20)

g(x,Q2)→ ag(x,Q2), (6.21)

which allows to rewrite the momentum rule as

1 =
1

X

X∫
0

dxx

∑
f

qfvn(x,Q2) +
∑
j

qfcjn(x, xj) + aqfs(x,Q
2)

+ agn(x,Q2)

 =

=

1∫
0

dxx

∑
f

Nfvn

Nfv0
qfv0(x,Q2) +

∑
j

qfcj0(x, xj) + aqfs0(x,Q2)

+ ag0(x,Q2)

 =

= a+
∑
f

1∫
0

dxx

(Nfvn

Nfv0
− a
)
qfv0(x,Q2) +

∑
j

qfcj0(x, xj)

 =

= a

1−
∑
f

Nfv0〈xfv0〉

+
∑
f

Nfvn〈xfv0〉+
∑
f,j

〈xfcj0〉, (6.22)

where 〈xfv0〉 and 〈xfcj0〉 are average momentum fractions carried by valence and companion quarks

before the first hard interaction. Equation 6.22 fixes a value of a normalization constant a and

allows to express it as

a =

1−∑
f

Nfvn〈xfv0〉 −
∑
f,j

〈xfcj0〉

1−∑
f

Nfv0〈xfv0〉
. (6.23)

Constrains set by Eq. 6.10, Eq. 6.18 and Eq. 6.19 and realized via Eq. 6.2, Eq. 6.6, Eq. 6.13,

Eq. 6.20 and Eq. 6.21 are valid for all PDFs used to simulate n’th interaction and, therefore, can

be seen as a generalization of standard sum rules. In the next section we will consider a particular

case of DPS and compare the Pythia’s approach to dPDFs and sum rules against the approach of

Gaunt and Stirling [173].

After performing the modification of PDFs Pythia generates events using hit-or-miss algorithm,

see Chapter 3.1. Namely, it evaluates dPDFs for both hadrons such that

Dij(x1, x2, Q
2
1, Q

2
2) = f iraw(x1, Q

2
1) f jmod(x2, Q

2
2),

Dkl(x3, x4, Q
2
1, Q

2
2) = fkraw(x3, Q

2
1) f lmod(x4, Q

2
2). (6.24)

As the next step it assigns to each event a weight w evaluated according to

ω =
f iraw(x1, Q

2
1) f jmod(x2, Q

2
2) fkraw(x3, Q

2
1) f lmod(x4, Q

2
2)

f iraw(x1, Q2
1) f jraw(x2, Q2

2) fkraw(x3, Q2
1) f lraw(x4, Q2

2)

=
f jmod(x2, Q

2
2) f lmod(x4, Q

2
2)

f jraw(x2, Q2
2) f lraw(x4, Q2

2)
, (6.25)
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where PDFs in the denominator have Bjorken variables satisfying longitudinal momentum conserva-

tion constraints x1 + x2 < 1 and x3 + x4 < 1. After producing a weighted event one compares its

weight ω against a maximal weight ωmax allowed by the phase space of a given DPS process and

according to the hit-or-miss algorithm decides either to keep or discard the given event. Later in

this chapter we will discuss an improved version of this approach to the generation of DPS events

available starting from Pythia version 8.240.
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6.2 Sum rules: comparison between Pythia’s and Gaunt & Stirling

approaches

Having explored some key aspects of Pythia’s model of dPDFs, we can start to compare its

predictions against predictions of the GS09 model. In this section we will check in detail how well

both models of dPDFs satisfy the “double” sum rules given by Eq. 2.17 - Eq. 2.20 and discuss some

differences and similarities between both Pythia and GS09 dPDFs.

In order to perform a comparison between both models it is convenient to write dPDFs in

Pythia’s notation

Dj1j2
p (x1, x2, Q

2
1, Q

2
2) = f j1raw(x1, Q

2
1)f j2mod(x2, Q

2
2), (6.26)

where f j1raw(x1, Q
2
1) is a standard collinear PDF being used for the first hard interaction and

f j2mod(x2, Q
2
2) is a PDF modified according to the first hard interaction and being used for the

second one. In this section, for simplicity’s sake, we will set Q2
1 = Q2

2 = Q2. The rules set by

Eq. 2.17 - Eq. 2.20 can be also written for the first parton (j1, x1) being fixed:

∑
j2

1−x1∫
0

dx2 x2Dj1j2(x1, x2, Q
2) = (1− x1) fj1(x1, Q

2), (6.27)

1−x1∫
0

dx2

[
Dj1j2(x1, x2, Q

2)−Dj1 j̄2(x1, x2, Q
2)
]

= Nj2v fj1(x1, Q
2), if j1 6= j2 or j̄2, (6.28)

1−x1∫
0

dx2

[
Dj1j2(x1, x2, Q

2)−Dj1 j̄2(x1, x2, Q
2)
]

= (Nj2v − 1) fj1(x1, Q
2), if j1 = j2, (6.29)

1−x1∫
0

dx2

[
Dj1j2(x1, x2, Q

2)−Dj1 j̄2(x1, x2, Q
2)
]

= (Nj2v + 1) fj1(x1, Q
2), if j1 = j̄2. (6.30)

First of all, let us check how the ansatz given by Eq. 6.26 satisfies the momentum sum rule given

by Eq. 6.27. By substituting Eq. 6.26 into Eq. 6.27 we get

∑
j2

1−x1∫
0

dx2 x2 f
j1
raw(x1, Q

2)f j2mod(x2, Q
2) = (1− x1) f j1raw(x1, Q

2), (6.31)

or

∑
j2

1−x1∫
0

dx2 x2 f
j2
mod(x2, Q

2) = (1− x1). (6.32)

Since j2 in
∑

j2
runs over all parton species one can write Eq. 6.32 as

1−x1∫
0

dx2 x2

∑
j=q,q̄

f jmod(x2, Q
2) + fgmod(x2, Q

2)

 = (1− x1), (6.33)

which is exactly equivalent to the momentum conservation constraint being used in Pythia as in
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Eq. 6.10 with n = 2, X = 1−x1. Therefore, we see that dPDFs in GS09 and Pythia models satisfy

the same momentum rule expressed by Eq. 2.17 and Eq. 6.10, correspondingly. Now let us check

numerically how well both models satisfy momentum sum rule given by Eq. 6.27 and Eq. 6.33. In

order to do that we write Eq. 6.27 and Eq. 6.33 in a schematic form as

x1fj1(x1, Q
2) +

1−x1∫
min(x1)

dx2 x2

∑
() = 1, (6.34)

x1 +

1−x1∫
min(x1)

dx2 x2

∑
() = 1, (6.35)

and check how well the LHS of Eq. 6.35 and Eq. 6.35 matches unity. We use Eq. 6.35 to check

the momentum sum rule for GS09 dPDFs and Eq. 6.35 to check the momentum sum rules for the

Pythia dPDFs. We set the lower integration boundary min(x1) in Eq. 6.35 to 10−6 which is the

lower x value of the GS09 grids we use. As we will see later in this section the grid limitations lead

to the violation of the sum rules for the values of x1 close to the lower grid boundary. In order to

avoid these boundary effects for the checks of sum rules with Pythia dPDFs we will set the lower

integration boundary in Eq. 6.35 to 10−8.

In order to be able to perform numerical integration in Eq. 6.35 one has to be able to evaluate

PDFs modified by Pythia f imod(x,Q
2) in the given integration range. Normally, it is not possible

since the corresponding part of the MPI model is hidden from a standard Pythia user. However,

it can be achieved by instantiation of objects which are members of the BeamParticle class as

explained in Appendix H. For numerical integration we use CQUAD doubly-adaptive integration

routine from GSL Scientific Library v2.4 [294]. In order to get values of single PDFs in Eq. 6.33

we use LHAPDF6 library [296] and MSTW LO PDF set [298]. In order to check how well GS09

dPDFs satisfy the momentum sum rule we use two grids with 300 and 600 grid points. The results

of numerical checks are given in Table 6.1.

x1 id1 Pythia GS09 300 grid points GS09 600 grid points

1.0000e-06 1 9.9909e-01 ± 8.2e-04 8.9508e-01 ± 8.7e-04 8.9851e-01 ± 8.7e-04

5.0000e-06 1 9.9909e-01 ± 8.2e-04 9.9784e-01 ± 9.8e-04 9.9297e-01 ± 9.7e-04

2.5000e-05 1 9.9909e-01 ± 8.1e-04 1.0081e+00 ± 9.6e-04 1.0067e+00 ± 9.9e-04

1.2500e-04 1 9.9909e-01 ± 9.2e-04 1.0058e+00 ± 9.6e-04 1.0088e+00 ± 9.8e-04

6.2500e-04 1 9.9904e-01 ± 8.5e-04 1.0145e+00 ± 9.9e-04 1.0137e+00 ± 9.9e-04

3.1250e-03 1 9.9911e-01 ± 6.9e-03 1.0249e+00 ± 1.0e-03 1.0225e+00 ± 9.9e-04

1.5625e-02 1 9.9914e-01 ± 1.2e-01 1.0355e+00 ± 1.0e-03 1.0381e+00 ± 1.0e-04

7.8125e-02 1 1.0039e+00 ± 1.9e-01 1.0243e+00 ± 8.9e-04 1.0385e+00 ± 9.2e-04

3.9063e-01 1 1.0046e+00 ± 5.7e-04 1.0060e+00 ± 6.0e-04 1.0002e+00 ± 5.8e-04

Table 6.1: Test of the momentum sum rule, Eq. 6.27 and Eq. 6.33. Pythia and GS09 models of
dPDFs. The factorization scales are set to 5 GeV.

We see that both approaches satisfy Eq. 6.27 and Eq. 6.33 rule at 1% accuracy level for most of

the values of x1. Relatively strong deviations from unity for GS09 dPDFs at low values of x1 are
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related to the low x integration limit which is 10−6 for the grids we use. The errors in Table 6.1

are given by an estimate of the absolute error (abserr) returned by the gsl_integration_cquad

routine which we run with desired absolute (epsabs) and relative error (epsrel) limits set to 0 and

10−3 respectively. We see that the estimate of the absolute error for CQUAD method is usually

smaller than 10−3. However we observe abserr ∼ 10−1 for the check of Eq. 6.33 with Pythia’s

dPDFs at x1 ∼ 10−2. The reason is in the different treatment of valence and sea quarks within

Pythia’s frameworks which makes numerical integration in this particular range of x complicated.

We will discuss it in more detail later when we perform numerical checks of the number sum rules.

For the moment let us note that one gets a better error estimate using the VEGAS algorithm [295]

supplied with the GSL Library, see Table 6.2.

x1 id1 Pythia CQUAD integration Pythia VEGAS integration

1.0000e-06 1 9.9909e-01 ± 8.2e-04 9.990794e-01 7.579513e-07

5.0000e-06 1 9.9909e-01 ± 8.2e-04 9.990747e-01 6.055986e-06

2.5000e-05 1 9.9909e-01 ± 8.1e-04 9.990668e-01 1.343860e-05

1.2500e-04 1 9.9909e-01 ± 9.2e-04 9.991279e-01 2.772772e-05

6.2500e-04 1 9.9904e-01 ± 8.5e-04 9.993865e-01 5.407137e-05

3.1250e-03 1 9.9911e-01 ± 6.9e-03 1.000161e+00 9.574375e-05

1.5625e-02 1 9.9914e-01 ± 1.2e-01 1.001569e+00 1.472444e-04

7.8125e-02 1 1.0039e+00 ± 1.9e-01 1.002877e+00 1.809566e-04

3.9063e-01 1 1.0046e+00 ± 5.7e-04 1.004329e+00 6.467959e-05

Table 6.2: Test of the momentum sum rule, Eq. 6.33, with different integration routines. Pythia
model of dPDFs. Both factorization scales are set to 5 GeV.

Now let us switch attention to the number rules. It is convenient to express them in terms of a ratio

Rj1j2(x1, x2, Q
2) = x2

Dj1j2
p (x1, x2, Q

2)−Dj1j̄2
p (x1, x2, Q

2)

f j1raw(x1, Q2)
. (6.36)

The meaning of Rj1j2(x1, x2, Q
2) becomes clear if one neglects momentum and number conser-

vation and substitute Dj1j2
p (x1, x2, Q

2) = f j1raw(x1, Q
2)f j2raw(x2, Q

2) in Eq. 6.36. The function

Rj1j2(x1, x2, Q
2) then turns simply into a valence quark PDF multiplied by Bjorken-x:

Rj1j2(x1, x2, Q
2) = x2

[
f j2raw(x2, Q

2)− f j̄2raw(x2, Q
2)
]

= x2f
j2
V al(x2, Q

2). (6.37)

Using Rj1j2(x1, x2, Q
2) one can write number sum rules in a compact form as

1−x1∫
0

dx2

x2
Rj1j2(x1, x2, Q

2) = Nj2v , if j1 6= j2 or j̄2,

1−x1∫
0

dx2

x2
Rj1j2(x1, x2, Q

2) = (Nj2v − 1), if j1 = j2,

1−x1∫
0

dx2

x2
Rj1j2(x1, x2, Q

2) = (Nj2v + 1), if j1 = j̄2. (6.38)
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Since Dj1j2
p (x1, x2, Q

2) = f j1raw(x1, Q
2)f j2mod(x2, Q

2) one can write Rj1j2(x1, x2, Q
2) as

Rj1j2(x1, x2, Q
2) = x2

f j1raw(x1, Q
2)f j2mod(x2, Q

2)− f j1raw(x1, Q
2)f j̄2mod(x2, Q

2)

f j1raw(x1, Q2)

= x2

[
f j2mod(x2, Q

2)− f j̄2mod(x2, Q
2)
]

(6.39)

which allows to rewrite the number sum rules as

1−x1∫
0

dx2

x2
x2

[
f j2mod(x2, Q

2)− f j̄2mod(x2, Q
2)
]

= Nj2v j1 6= j2 or j̄2,

1−x1∫
0

dx2

x2
x2

[
f j2mod(x2, Q

2)− f j̄2mod(x2, Q
2)
]

= (Nj2v − 1), if j1 = j2,

1−x1∫
0

dx2

x2
x2

[
f j2mod(x2, Q

2)− f j̄2mod(x2, Q
2)
]

= (Nj2v + 1), if j1 = j̄2, (6.40)

where one can consider the difference f j2mod(x2, Q
2)− f j̄2mod(x2, Q

2) as a PDF of a valence quark of a

flavour j2 modified according to the first hard interaction involving a parton of a flavour f1.

We see that the number sum rules given in Eq. 6.38 and Eq. 6.40 formally coincide with number

constraints used in Pythia as in Eq. 6.18 and Eq. 6.19. However, there is a significant difference

between the ways Eq. 6.38 and Eq. 6.18 - 6.19 are satisfied in GS09 and Pythia models. Below we

illustrate the difference between GS09 and Pythia dPDFs taking as an example Rdd(x1, x2, Q
2).

In Fig. 6.3 we compare Rdd(x1, x2, Q
2) evaluated with Pythia and GS09 dPDFs against a valence

d-quark PDF. One can see how “1v2” splitting leads to negative values of Rdd(x1, x2, Q
2). For

example, if in the first interaction we select a d-quark at x1 = 10−6 it is probably a sea quark, which

was created due to a perturbative “1v2” splitting of a gluon into a dd̄ pair. Therefore, the remaining

d̄-quark has to be included into a “raw” d̄-quark PDF which means that f d̄raw(x2, Q
2) < f d̄mod(x2, Q

2)

for x2 ∼ 10−6. It implies that Rdd(x1, x2, Q
2) also becomes negative for x2 ∼ 10−6. Moreover,

negative value of Rdd(x1, x2, Q
2) at low x should be compensated by positive contribution at high

x in order to preserve the number sum rule given by Eq. 6.41. One can see it in the upper panel in

Fig. 6.3. In this case

1−x1∫
0

dx2

x2
Rdd(x1, x2, Q

2) = Nvd0 − 1 = 0. (6.41)

The same holds if one selects a d-quark at higher values of x, see the middle and the lower panels

in Fig. 6.3. In Tab. 6.3 we provide a numerical check of Eq. 6.41 with the QCDAD integration

routine. We see that for x1 > 10−4 GS09 satisfies Eq. 6.41 at a percent level. The violation of Eq.

6.41 at low values of x1 is a boundary effect due to the limitation of the GS09 grid, see Fig. 6.3. In

case of the dPDFs modelled by Pythia Eq. 6.41 is violated for the values of x1 approximately in

between 10−3 and 10−2. The reason for it is that Pythia treats valence and sea PDFs separately,

as described in section 6.1. For each generation Pythia decides in a probabilistic way what type of
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PDFs (sea or valence) to use to model dPDFs for a given event. Therefore, for the region where

valence and sea PDFs overlap the dPDFs used in Pythia will become difficult to integrate. In the

lower panel of Fig. 6.3 one sees first signs of these effect given by the kink of the Rj1j2(x1, x2, Q
2)

function for the x2 in between 10−4 and 10−3. However, we argue that the integration algorithm

which involves multiple evaluations of the integrand in Eq. 6.41 should demonstrate better results

as the CQUAD algorithm since multiple evaluation of Rj1j2(x1, x2, Q
2) has to “washout” the kink

structures due to the different treatment of the valence and sea PDFs in Pythia model. In order

to illustrate that we compare results of numerical integration in Eq. 6.41 obtained with CQUAD

algorithm against results obtained with the VEGAS algorithm, see Table 6.4. We see that the

numerical integration in Eq. 6.41 performed with the VEGAS algorithm gives zero for the values of

x1 located in the “difficult” region between 10−3 and 10−2. The numerical checks performed for the

other sum rules give similar results.
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Figure 6.3: The modification of the valence d-quark PDF Rdd(x1, x2, Q
2) as a function of x2 for

x1 = 10−6, 10−5, 10−4. Comparison between GS09 and Pythia dPDFs.
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x1 Nd2v Pythia Nd2v GS09 300 grid points

1.0000e-06 1.4e-02 ± 1.3e-05 6.4e-01 ± 6.3e-04

5.0000e-06 1.9e-03 ± 1.8e-06 3.7e-01 ± 3.7e-04

2.5000e-05 -5.3e-04 ± 5.2e-07 1.5e-01 ± 1.4e-04

1.2500e-04 -1.0e-03 ± 1.0e-06 6.4e-02 ± 6.4e-05

6.2500e-04 -7.7e-04 ± 4.5e-02 4.8e-02 ± 4.8e-05

3.1250e-03 3.2e-01 ± 1.6e+01 3.6e-02 ± 3.6e-05

1.5625e-02 -1.9e-01 ± 4.1e+01 2.1e-02 ± 2.1e-05

7.8125e-02 -1.2e-01 ± 5.4e+01 7.8e-03 ± 7.7e-06

3.9063e-01 0.0e+00 ± 0.0e+00 2.9e-03 ± 2.9e-06

Table 6.3: Pythia: test of the second number sum rule for a d-quark, Eq. 6.29. Numerical
integration with the CQUAD routine. We use red colour for the cells where the results of the
numerical integration in Eq. 6.41 strongly deviate from zero.

x1 Nd2v Pythia CQUAD integration Nd2v Pythia VEGAS integration

1.0000e-06 1.4e-02 ± 1.3e-05 1.4e-02 ± 1.1e-04

5.0000e-06 1.9e-03 ± 1.8e-06 2.0e-03 ± 2.0e-04

2.5000e-05 -5.3e-04 ± 5.2e-07 -1.1e-02 ± 5.4e-03

1.2500e-04 -1.0e-03 ± 1.0e-06 -4.5e-03 ± 7.7e-03

6.2500e-04 -7.7e-04 ± 4.5e-02 -1.4e-02 ± 1.3e-02

3.1250e-03 3.2e-01 ± 1.6e+01 5.9e-03 ± 2.5e-02

1.5625e-02 -1.9e-01 ± 4.1e+01 -5.7e-03 ± 4.5e-02

7.8125e-02 -1.2e-01 ± 5.4e+01 -4.4e-03 ± 5.7e-02

3.9063e-01 0.0e+00 ± 0.0e+00 -1.7e-02 ± 2.5e-02

Table 6.4: Pythia: test of the second number sum rule for a d-quark, Eq. 6.29. Comparison between
numerical integration with CQUAD and VEGAS routines. We use red colour for the cells where
the results of the numerical integration in Eq. 6.41 strongly deviate from zero.

In this section we have demonstrated that both GS09 and Pythia dPDFs satisfy the same set

of sum rules proposed by Gaunt and Stirling in [173]. A short summary on both models of dPDFs

is given in Table 6.4. In the next section we will discuss how the differences between GS09 and

Pythia dPDFs affects the differential DPS distributions.
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Model of dPDFs Pythia dPDFs GS09 dPDFs

Different approaches to describe
valence and sea partons

Yes No

Double DGLAP evolution No Yes

Momentum sum rule Yes Yes

Number sum rules Yes Yes

Splitting term

Used for dynamical
modification of sea PDFs.

Up to a normalisation constant
coincides with a splitting term

in dDGLAP evolution equations,
however accounts only for
g → qq̄ splitting processes

Included in dDGLAP evolution.
Accounts for all possible

splitting processes

Table 6.4: Short summary of GS09 and Pythia models of dPDFs.
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6.3 Four-jet DPS production: comparison between Pythia’s and

Gaunt & Stirling approaches

Since double parton distribution functions are unknown objects one has to use certain phenomeno-

logically motivated assumptions to model them. The easiest way to model dPDFs is a so called

“naive” approach where one replaces a dPDF by a product of two “single” collinear PDFs and a

θ-function to preserve conservation of a longitudinal momentum

Dj1j2(x1, x2, Q
2
1, Q

2
2) = fj1(x1, Q

2
1) fj2(x2, Q

2
2) θ(1− x1 − x2), (6.42)

see Chapter 2.1. This approach neglects correlations in x-space and violates the number sum

rules given by Eq. 2.18 - Eq. 2.20. Moreover, as it was shown in [164], [167] and [168], this ansatz

does not satisfy dDGLAP evolution equations. Nevertheless, it is still quite commonly used in

phenomenological studies of DPS. Here we will use it as a baseline for our comparisons against GS09

and Pythia models of dPDFs. In our analysis we will compare impact of different models of dPDFs

on differential distributions of DPS events. Namely we will study distributions in terms of a leading

jet p⊥ and the maximal rapidity difference ∆Y = max|yi − yj |. We require four jets produced in

each DPS event to have p⊥ ∈ [20, 100] GeV. We normalize all distributions such that the total area

under each histogram is equal to the corresponding total cross section (given in nanobarns). These

values are evaluated according to the following procedure: first one finds how the total Pythia DPS

cross section changes after imposing cuts on produced partons. The new cross section σPythia
cut is

related to the old one σPythia
tot as

σPythia
tot

σPythia
cut

=
ωPythia

tot

ωPythia
cut

, (6.43)

where ωPythia
tot is the total weight of all generated events and ωPythia

cut is the total weight of events

that remain after cuts2.

After evaluating σPythia
cut one has to find the impact of GS09 and “naive” dPDFs. In order to do

that one modifies a weight of each Pythia event according to

ωGS09
i = ωPythia

i

D(xA1, xA2, Q
2
1, Q

2
2)D(xB1, xB2, Q

2
1, Q

2
2)

fraw(xA1, Q2
1)fmod(xA2, Q2

2)fraw(xB1, Q2
1)fmod(xB2, Q2

2)
, (6.44)

and

ωNaive
i = ωPythia

i

fraw(xA2, Q
2
2)fraw(xB2, Q

2
2)

fmod(xA2, Q2
2)fmod(xB2, Q2

2)
×

× θ(1− xA1 − xA2) θ(1− xB1 − xB2), (6.45)

where D(xAi, xAi, Q
2
1, Q

2
2) are GS09 dPDFs, fraw(xAi, Q

2
i ) are standard PDFs used by Pythia to

2Usually Pythia generates unweighted events with weights equal to unity which implies that ωPythia
tot and ωPythia

cut

are the total number of generated events NPythia
tot and the total number of events remaining after imposing cuts

NPythia
cut . However, there are several important cases when each event acquires a non-trivial weight, for example, in pA

collisions. Therefore, in Eq. 6.43 we use ωPythia
tot and ωPythia

cut instead of NPythia
tot and NPythia

cut . More details on event
weights in Pythia can be found in [84].
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describe the first hard interaction and fmod(xAi, Q
2
i ) are PDFs modified by Pythia to describe the

second hard interaction. Here we use the Pythia’s notation as shown in Fig. 6.5.

After reweighting histograms one evaluates the modified total weights of all events that pass

through the cuts according to

ωGS09
cut =

∑
i

ωGS09
i ,

ωNaive
cut =

∑
i

ωNaive
i ,

and then evaluates the corresponding total cross sections from

ωGS09
tot

ωPythia
cut

=
σGS09

tot

σPythia
cut

,

ωNaive
tot

ωPythia
cut

=
σNaive

tot

σPythia
cut

.

We shall note that a standard Pythia user can access PDFs being used to simulate the first hard

interaction but not the PDFs being used for all subsequent interactions and, therefore, cannot

compute ωGS09, ωPythia and ωNaive. In order to solve this problem we added new members to the

Event class to store the information about the PDFs being used for the second interaction. We

also added two new methods to set and to read the values of these new members. This additional

information has to be written to the event record in the ProcessLevel::nextOne(Event& process)

method of the ProcessLevel class after the successful generation of the second hard interaction. The

information assigned in a such way is then accessible together with the other standard information

stored in the event record and can be used to evaluate ωGS09, ωPythia and ωNaive during the

generation procedure.

B1A1

A2 B2

Figure 6.5: The notation being used in Pythia. All variables with A1 and B1 (A2 and B2) in their
names correspond to the first (second) hard interaction.

The differential distributions for “naive”, Pythia and GS09 dPDFs are given in Fig. 6.6 and Fig.

6.7. Before discussing our results we shall make several important comments. First of all, in order

to produce DPS distributions in Fig. 6.6 and Fig. 6.7 we have set SecondHard:generate = on and

PartonLevel:mpi = off in the Pythia setup. This combination of flags allows to always generate
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events with only two hard interactions per one proton-proton collision. However, it implies that the

total DPS cross section will be given by

σ2 =
σND

2

(
σ1

σND

)2

, (6.46)

where σND is the total nondiffractive cross section [260]. The connection between the “pocket

formula” of DPS and Eq. 6.46 is given by

σ2 =
σND

2

(
σ1

σND

)2 σND

σeff
=

1

2

σ2
1

σeff
, (6.47)

where σND/σeff gauges the deviation from the Poissonian statistics [260]. The transition from

Eq. 6.46 to Eq. 6.47 in Pythia, however, is performed only if the MPI modelling is switched

on. Therefore, the parameter σeff does not enter into our DPS simulations performed with the

aforementioned setup. It implies that the DPS cross sections in our simulations are evaluated

according to Eq. 6.46 with σND instead of σeff . However, since we are interested only in the

relative difference between distributions of DPS events produced with different models of dPDFs,

the aforementioned difference in the normalization of the DPS cross section does not affect our

analysis. The complete setup we use is given in Table 6.5.

As we can see in Fig. 6.6 the DPS distributions in terms of the leading jet p⊥ demonstrate a

mild dependence on the the choice of the model of the dPDFs. The distributions in terms of the

maximal rapidity difference ∆Y, however, demonstrate a strong difference at the high values of ∆Y.

We also see that at high values of ∆Y the difference between DPS distributions generated with

GS09 and Pythia dPDFs is smaller than the difference between distributions generated with GS09

and “naive” dPDFs. Since, as we have discussed in section 6.2, both GS09 and Pythia models of

dPDFs obey the same set of sum rules, we conclude that the constraints on dPDFs imposed by the

sum rules play an important role at high values of ∆Y. Moreover, since the model of Pythia does

not account for the effects due to the double DGLAP evolution of dPDFs we conclude that the

evolution effects and the effects induced by momentum and number sum rules in GS09 model are of

comparable size at large values of ∆Y.

Also by comparing ratios of Pythia distributions reweighted with GS09 and “naive” dPDFs

in Fig 6.6 and Fig. 6.7 with the corresponding ratios in Fig. 4.5 and Fig. 4.7 we conclude that

predictions made with our standalone DPS code agree at qualitative level with the predictions

obtained with reweighted Pythia distributions. Namely, the ratio between Pythia distributions

reweighted with GS09 and “naive” dPDFs in Fig 6.6 and Fig. 6.7 demonstrate the same dependence

on the collision energy as the corresponding ratios in Fig. 4.5 and Fig. 4.7. However, we shall note

that in this chapter we have used a default Pythia setup which implies that only first three flavours

are considered as massless. Therefore, the four-jet DPS production in this chapter was simulated

without taking contributions from charm quarks into account. We leave a detailed comparison

between the Pyhia event generator and our standalone DPS code as well as the study of the role of

different flavour contributions for the future work.
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Figure 6.6: Comparison between leading jet p⊥ DPS distributions generated with GS09, Pythia
and “naive” dPDFs. Upper panel:

√
S = 7 TeV. Lower panel:

√
S = 13 TeV.
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Figure 6.7: Comparison between leading jet ∆Y = max|yi − yj | DPS distributions generated with
GS09, Pythia and “naive” dPDFs. Upper panel:

√
S = 7 TeV. Lower panel:

√
S = 13 TeV.
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6.4 Symmetrisation of dPDFs in the Pythia event generator

In the previous section we have not made a distinction between DPS and MPI models being used

in the Pythia event generator. For example, in Chapter 6.1 we have described the way Pythia

modifies PDFs in order to account for the momentum and number conservation in subsequent

interactions, which applies both to MPI and DPS. Here, however, we will discuss some distinctive

features of DPS and MPI models of Pythia as well as some recent modifications of DPS modelling.

The model of DPS used in Pythia has inherited its main concepts from the original Pythia’s

model of MPI. This, in particular, implies that only PDFs used to generate the second hard interaction

are modified in order to account for momentum and flavour conservation. This procedure, however,

introduces asymmetry of the Pythia’s dPDFs and is in contradiction with the GS09 approach. This

contradictions arise from the symmetry of dPDF under a simultaneous interchange of all its indices

Da1,a2

(
x1, x2, Q

2
1, Q

2
2

)
= Da2,a1

(
x2, x1, Q

2
2, Q

2
1

)
, (6.48)

which is simply a reflection of the fact that there is no ordering of hard interactions in DPS. However,

dPDFs being used in Pythia do not posses such symmetry since

Da1,a2

(
x1, x2, Q

2
1, Q

2
2

)
' fraw(x1, Q

2
1)fmod(x2, Q

2
2) 6= (6.49)

6= fraw(x2, Q
2
2)fmod(x1, Q

2
1), (6.50)

and, therefore, within the Pythia’s framework

Da1,a2

(
x1, x2, Q

2
1, Q

2
2

)
6= Da2,a1

(
x2, x1, Q

2
2, Q

2
1

)
. (6.51)

We illustrate this discrepancy by studying a distribution of the ratio between GS09 and Pythia

DPS luminosities for a given event

ω =
Da1,a2(x1, x2, Q

2
1, Q

2
2)Db1,b2(x3, x4, Q

2
1, Q

2
2)

fa1
raw(x1, Q2

1)fa2
mod(x2, Q2

2)f b1raw(x3, Q2
1)f b2mod(x4, Q2

2)
. (6.52)

Since ω is a function of 10 variables, in order to facilitate our analysis, we consider production of

two quarks of the same flavour and two gluons via (q g → q g) ⊗ (q g → q g) DPS process. Moreover,

we consider only two different combinations of dPDFs, namely Dqq ⊗ Dgg and Dgg ⊗ Dqq which

allows to express ω as

ω =
Dqq(x1, x2, Q

2
1, Q

2
2)Dgg(x3, x4, Q

2
1, Q

2
2)

f qraw(x1, Q2
1)f qmod(x2, Q2

2)fgraw(x3, Q2
1)fgmod(x4, Q2

2)
. (6.53)

We see that the numerator of Eq. 6.53 is symmetric under the simultaneous interchange x1 ↔ x2

and Q2
1 ↔ Q2

2. This, however, is not true for the denominator. Therefore ω depends on the ordering

in x1, x2 and Q2
1, Q

2
2. In order to illustrate it we consider four different permutations:

1. x1 > x2 and Q1 > Q2,

2. x1 < x2 and Q1 > Q2,

3. x1 > x2 and Q1 < Q2,
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Figure 6.8: Distribution of the ratio of GS09 and Pythia DPS luminosities: old asymmetric approach
available in Pythia releases with versions earlier than 8.240.

4. x1 < x2 and Q1 < Q2.

In Fig. 6.8 we plot the distributions of ω for the aforementioned combinations of Bjorken variables

and factorization scales. The distributions are normalized such that the total area under each

histogram is equal to unity. We see that the maximum of each histogram is located close to unity

which means that despite the significant conceptual differences between the GS09 and Pythia

approaches both models give rather similar predictions. However, we also see that among four

different histograms one can identify two separate subgroups, namely we see that distributions

with x1 > x2, Q1 > Q2 and x1 > x2, Q1 < Q2 (blue and green histograms) coincide as well as

distributions with x1 < x2, Q1 > Q2 and x1 < x2 and Q1 < Q2 (orange and red histograms). This

implies that DPS events generated with Pythia do not demonstrate dependence on the ordering in

factorization scales but instead depend on the ordering in Bjorken variables. The DPS model of

Pythia has inherited this ordering from the MPI model of Pythia where such ordering is used to

preserve conservation of the longitudinal momentum.

In the rest of the section we describe how to symmetrize dPDFs used to generate DPS events in

the Pythia event generator. In Chapter 6.1 we have described how a standard hit-or-miss approach

works in a context of generation of DPS events within Pythia’s framework. In particular, we have

discussed the way Pythia produces weighted events at the first stage of the generation algorithm,

see Eq. 6.25. The key idea of the improved approach is to replace an asymmetric product of two

Pythia’s PDFs
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Figure 6.9: Distribution of the ratio of GS09 and Pythia DPS luminosities: new symmetric approach
implemented in Pythia 8.240.
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After doing that one evaluates a symmetric DPS weight
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where a conservation of the longitudinal momentum is implicitly assumed. Unlike the old DPS weight

in Eq. 6.25 by construction the new weight ωsym possesses the same symmetry under permutations

i↔ j, x1 ↔ x2, Q1 ↔ Q2 and k ↔ l, x3 ↔ x4, Q1 ↔ Q2 as GS09 dPDFs. After evaluation of ωsym

one performs the second step of the hit-or-miss algorithm to produce unweighted DPS events.

Now we can study the distribution of a ratio between GS09 DPS luminosities and symmetrized
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Pythia DPS luminosities given by Eq. 6.54. The results are presented in Fig. 6.9. We see that

the new distributions, contrary to the distributions shown in Fig. 6.8 have a narrower shape and

demonstrate a symmetry under the simultaneous interchange of Bjorken variables and factorization

scales.

We can study now how the effect of the symmetrization of the DPS weights. In order to do that

we compare predictions of recently released Pythia 8.240 which contains the improved model3

of DPS against predictions of older release Pythia 8.235. Namely, we simulate the four-jet DPS

production in pp collisions at
√
S = 7 TeV and

√
S = 13 TeV. Similarly to our previous analysis

we require all four jets to have a transverse momentum between 20 GeV and 100 GeV and we

choose the factorization and renormalization scales to be equal to the geometric mean of the squared

transverse masses of the two outgoing particles i.e. transverse momentum squared in the case of

massless particles. The complete setup is given in Table 6.5. The results of the simulation are

PYTHIA SWITCH VALUE

Random:setSeed on

HardQCD:all on

SecondHard:generate on

SecondHard:TwoJets on

PartonLevel:isr off

PartonLevel:fsr off

PartonLevel:Remnants off

Check:event off

ColourReconnection:reconnect off

PartonLevel:mpi off

HadronLevel:all off

PYTHIA FLAG VALUE

HardQCD:nQuarkNew 3

PhaseSpace:pTHatMin 20.0

PhaseSpace:pTHatMax 100.0

Beams:idA 2212

Beams:idB 2212

Beams:frameType 1

Beams:eCM 7, 13 TeV

PDF:pSet MSTW2008lo68cl

SigmaProcess:renormScale2 2

SigmaProcess:factorScale2 2

Table 6.5: Pythia settings.

shown in Fig. 6.10. We see that the overall impact of the symmetrization of dPDFs is very modest

and hardly exceeds 1% level. The small difference between both approaches can be explained by an

exponential suppression of “tails” of distributions of ω as it is shown in Fig. 6.8 - 6.9.

3For the implementation see the nextTwo method of the ProcessLevel class.
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Figure 6.10: Four jet production at
√
S = 7 TeV and

√
S = 13 TeV. Comparison between ∆Y

distributions simulated with Pythia 8.240 and Pythia 8.235.
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6.5 Conclusions

In this chapter we have provided a detailed comparison between GS09 model of dPDFs and the

model of dPDFs by Sjöstrand and Skands [260] being used in the Pythia event generator [255] -

[257]. We have demonstrated that both models of dPDFs obey the same set of sum rules proposed

by Gaunt & Stirling in [173] (GS sum rules). The fundamental character of the GS sum rules

was recently demonstrated in the paper of Diehl et al. [177] where it was shown that GS sum

rules are preserved in QCD in all orders in perturbation theory. Since the GS sum rules state the

conservation of momentum and number (flavour) of partons in the DPS processes they may induce

the important partonic correlations especially at large values of ∆Y = max|yi − yj| where one can

probe valence quark distributions. In order to disentangle the evolution effects in GS09 model

and the flavour and momentum correlations induced by the GS sum rules, we have studied the

four-jet DPS production for three different models of dPDFs: GS09, Sjöstrand & Skands and “naive”

dPDFs. Since the model of Sjöstrand & Skands preserves the GS sum rules but does not include the

evolution effects due to the dDGLAP evolution equations the aforementioned comparison allows to

study the impact of the GS sum rules separately. The comparison between ∆Y DPS distributions

generated with these three sets of dPDFs shows that at high values of ∆Y the difference between

distributions generated with GS09 and Sjöstrand & Skands dPDFs is smaller than the difference

between distributions generated with GS09 and “naive” dPDFs. Therefore, we conclude that the

correlations in momentum and flavour induced by the GS sum rules may have a sizeable impact on

the DPS production of four well separated in rapidity jets. The weights used to generate DPS events

in the Pythia event generator are evaluated according to the Pythia model of MPI [258] - [262].

Among the other things, it implies that the DPS weights are not symmetric under simultaneous

interchange of the Bjorken variables, factorization scales and labels of the partons involved into the

first and second hard interactions correspondingly. This ordering is dictated by the symmetry of

the DPS processes under the interchange of the initial state partons. We have studied the impact of

the symmetrization of the DPS weights on the four-jet DPS production and found it to be very

modest. The symmetrized DPS weights are available in the Pythia event generator starting from

the version 8.240.



Chapter 7

Four-jet DPS production in

proton-nucleus collisions within the

Pythia’s framework

7.1 Introduction

While a significant progress in theoretical description of DPS in pA collisions have been achieved

[213] - [216], a framework for realistic simulations of DPS in pA collisions is yet to be developed. In

this chapter we compare predictions of the Strikman & Treleani model [213] against predictions of

the Angantyr model of pA collisions [271], recently implemented in the Pythia 8 event generator

[255], [256].

7.2 The Angantyr model of pA collisions

Usually, the existing Monte Carlo event generators for pA collisions are more “special purpose” and

mostly dedicated to studies of formation and evolution of the Quark-Gluon Plasma, e.g. EPOS-LHC

[272], AMPT [273] and HIJING [274]. On the other side there are models postulating flow-like

effects to have a non-thermal origin and, therefore, aiming to reproduce general features of pA (AA)

collisions by adding a nuclear structure “on top” of existing pp models. One of such models called

Angantyr [271], was recently implemented in the Pythia 8 event generator. It was inspired by the

old Lund Fritiof model [275] and the DIPSY code [278] - [280] which models BFKL evolution of a

gluon cascade via Mueller dipole approach [276], [277].

The production of final state particles in Angantyr is based upon Pythia’s models for multiple

parton interaction (MPI) [258] - [262] and diffractive processes [282], [283] with certain modifications

which we are going to discuss below.

First of all let us describe the way Angantyr treats production of particles in interactions

involving one incident proton and a single nucleon as in Fig. 7.1 a). In this case one could expect

that all MPI would be distributed according to a Poissonian distribution. This approach to MPI

modelling, however, may lead to momentum violation and is in contradiction with KNO scaling [281]

of charge multiplicity distributions, see review [263]. In order to solve this issues all MPI in Pythia

161
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a) b)

Figure 7.1: A schematic representation of different contributions to DPS from Angantyr model.
a) Two versus two contribution. b) One versus two contribution. A zigzag line stands for a hard
pomeron exchange.

are ordered in transverse momentum as
√
s/2 > p⊥1 > p⊥2 > . . . > p⊥n > p⊥min. A probability of

the first interaction to happen at a given transverse momentum dσ
dp⊥1

/σpp
ND (s) is multiplied by a

Sudakow-like exponent

dP
dp⊥1

=
1

σpp
ND (s)

dσ

dp⊥1
exp

−
√
s/2∫

p⊥1

1

σpp
ND (s)

dσ

dp′⊥
dp′⊥

 , (7.1)

which ensures that no other interactions will happen in p⊥ range between
√
s/2 and p⊥1. Therefore,

a probability for all subsequent interactions is given by

dP
dp⊥i

=
1

σpp
ND (s)
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which ensures the aforementioned ordering. In addition to this, the MPI model of Pythia accounts

for momentum and number conservation which implies that PDFs used for the second interaction

(as well as for all subsequent interactions) will be “squeezed” and reweighted according to a history

of all previous interactions such that momentum and number conservation is preserved, see [260] and

Chapter 6.1. We shall also note that σeff does not enter explicitly in this model. More specifically

a ratio σpp
ND (s) /σeff describes a deviation of a distribution of MPIs from a Poissonian distribution,

see Chapter 4.2. However, it implies that direct comparison between predictions of Angantyr and

DPS model of Strikman and Treleani is not possible since the corresponding value of parameter

σeff is unknown. We will come back to this issue later in section 7.3.

Description of processes involving one incoming proton and two different nucleons is somewhat

more sophisticated. In principle one would want to implement the same contribution as shown in

Fig. 5.1 b). However, in practice, incorporation of such processes in Angantyr’s framework leads

to serious technical difficulties. It is possible to circumvent these issues by mimicking the second

interaction in Fig. 5.1 a) via pomeron-nucleon collision as shown in Fig. 7.1 b). In order to be

consistent with the terminology of the original Angantyr paper [271] in the following we refer to
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the processes shown in Fig. 5.1 as to double absorptive processes. In order to simulate double

absorptive process from Fig. 5.1 b), Angantyr will first simulate a single absorptive process by

using a standard model of pp collisions and then simulate a second absorptive process as it was

produced through a single diffractive excitation. All subsequent interactions will be produced by

using standard pp or pomeron-proton MPI models taking into account momentum conservation but

neglecting a number conservation as in old MPI model of Pythia [259].

There are several ways to produce diffractive events in Pythia 8. The Angantyr model is based

upon a model of soft diffraction in Pythia. For high-mass diffraction Pythia uses Ingelman and

Schlein model where pomeron is considered as a hadronic state [284]. Within this approach Pythia

treats a proton-pomeron collision as a normal non-diffractive hadron-hadron collision using standard

MPI, ISR and FSR models. Therefore, a corresponding differential 2→ 2 cross section is given by

dσpP
ij =

dxP
xP

dx1

x1

dβ

β
F (xP) x1fi/p(x1, Q

2)βfj/P(β,Q2) dσ̂ij , (7.3)

where xP is a fraction of the target proton momentum taken by the pomeron, β is a fraction of the

pomeron’s momentum taken by the parton j and x1 is a fraction of pomeron’s momentum taken

by parton i. A diffractive mass M2
X is therefore given by M2

X = xPs. In the Angantyr model a

pomeron flux F (xP) is postulated to be a constant which implies a flat distribution in log
(
M2
X

)
. A

hard cross section σ̂ij on the RHS of Eq. 7.3 is a standard leading order (LO) 2→ 2 cross section

which is known to be divergent for low p⊥ values. In this case Pythia imposes a smooth cut-off on

σ̂ij according to

dσ̂ij
dp2
⊥

∝
α2
s(p

2
⊥)

p4
⊥
→ α2

s(p
2
⊥ + p2
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(p2
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⊥0)2
, (7.4)

where p⊥0 is a soft regulator which depends either on diffractive mass (for diffractive processes) or

on collision energy (for standard pp processes). Nevertheless, even after a regularization of σ̂ij as in

Eq. 7.4, an integrated partonic cross section may exceed a total non-diffractive proton-pomeron

cross section for a given diffractive mass MX . In the MPI model of Pythia it is interpreted as a

possibility to have several sub-scatterings in each collision with an average number
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1
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However, as it was pointed out in [270], a modelling of single absorptive events via single diffractive

(SD) events results in too low activity in pA collisions. In principle, one can solve this problem

either by tuning the value of σpP
ND (MX) in Eq. 7.5 or by changing pomeron PDFs. By comparing a

distribution d〈NpP
sc 〉/dy for SD events
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, (7.6)
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against a corresponding distribution for standard non-diffractive pp events
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we see that if in Eq. 7.6 we set βfj/P,Q2 → xPβfj/p
(
xPβ,Q

2
)
, σpP

ND (MX)→ σpp
ND (s) we will get an

expression very similar to Eq. 7.7. In addition to this, a soft regulator p⊥0 in Eq. 7.4 now depends

on a collision energy p⊥0

(
M2
X

)
→ p⊥0 (s).

Validity of this approach was studied in detail in [271]. In particular it was shown that Eq. 7.6

with aforementioned modification provides an overall fair description of experimental data, see, for

example, Fig. 7.2. However, all Angantyr checks in [271] were related to MPI-sensitive distributions.

e. g. a charged multiplicity distribution. Indeed, such distributions are known to be very sensitive

to a number of semi-hard and soft sub-collisions in a given event, see, for example, review [263].

Therefore, correct predictions of shapes of such distributions can be seen as a validation of both

MPI and Angantyr models. In the next section of this chapter we will switch our attention from

MPI to DPS processes and perform another check of the Angantyr model. Namely, we will study

how well it can reproduce predictions of Strikman and Treleani for DPS production of four hard

jets in pA collisions.

7.3 Predictions of Pythia

In section 7.2 we have described the Angantyr model of pA collisions implemented in Pythia event

generator. Originally this model was not designed to study DPS in pA collisions. However, as we

discussed in section 7.2, the Angantyr model accounts for interactions which occur not only between

an incident proton and a single nucleon but also for processes which occur between an incident

proton and two different nucleons, as schematically shown in Fig. 7.1. These interactions are

realized via the MPI model and the model of diffractive interactions of Pythia with modifications

described in section 7.3. In the MPI model of Pythia all interactions are strictly ordered in

transverse momentum which implies that second interaction always will be softer than the first one.

It means that production of DPS events in MPI model is suppressed. Nevertheless, for the number

of generation calls large enough one can collect a sufficiently large DPS statistics by generating MPI

events. It means that, in principle, one can use the Angantyr model to simulate DPS events in pA

collisions. In Chapter 5 we discussed the application of Strikman & Treleani model of DPS in pA

collisions [213] to four-jet DPS production. Now, we investigate how well the Angantyr model can

reproduce predictions obtained within Strikman & Treleani framework.

However, before starting to compare predictions of Pythia against Strikman & Treleani model

several important comments have to be made. First of all, as we already mentioned in Chapter 6, all

MPI produced in a given event are strictly ordered in p⊥. This ordering, however, is in contradiction

with Strikman & Treleani model where a second process can have with equal probability a hard

scale either smaller or bigger than a hard scale of the first one. One should also keep in mind that,

in order to derive Eq. 5.7, Strikman and Treleani neglected partonic correlations in x-space and
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Figure 7.2: Comparison between the average charged multiplicity as a function of pseudo rapidity
in percentile bins of centrality for pPb collisions at

√
sNN = 5 TeV. Here the data from ATLAS

[289] is compared to results from Angantyr, from [271].

assumed that both DPS I and DPS II contributions populate the same phase space region. As we

have demonstrated in Chapter 5.2, the error due to this phase space approximation is completely

negligible, see Fig. 5.3 and Fig. 5.4. Effects due to the correlations in x-space, nevertheless,

may have a sizeable impact, see [216] and [171]-[173]. We also should keep in mind that Pythia’s

approach to momentum and number conservation effectively means presence of non-trivial x-space

partonic correlations in the MPI model. In the original paper of Strikman & Treleani the isospin

invariance between all nucleons was assumed. However, the Angantyr model distinguish between

protons and neutrons for signal processes (first hard interaction) and assumes the isospin invariance

for the minimum bias processes (sequential MPI generated after the first hard interaction). Finally,

we need to stress that the parameter σeff does not enter explicitly into MPI model of Pythia.

Therefore, in order to compare the predictions of Strikman & Treleani model against predictions

of Angantyr model one has to find the value of σeff in Strikman & Treleani model by fitting its

predictions to the prediction of Angantyr.

Now, after describing all the important differences between both approaches, let us study how the

DPS enhancement factor σDPS
pA /AσDPS

pp depends on a total number of nucleons A in the Angantyr

model. Due to the aforementioned ordering of MPI one will need to perform a high number of

generation calls in order to collect a good statistics for a four-jet DPS production, since a second
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MPI will most of the time occur at too low scale to be considered as a hard interaction1. Therefore,

we evaluate σDPS
pA according to a following algorithm:

• find a total weight wtot
pA for all events produced in pA collisions and a corresponding total

cross section σtot
pA.

• Find a total weight wDPS
pA of all events which satisfy a given set of cuts.

• Find a total DPS cross section in pA collisions σDPS
pA from the ratio

σDPS
pA

σtot
pA

=
wDPS

pA

wtot
pA

.

• Repeat the same for pp collisions. Find a corresponding total DPS cross section σDPS
pp .

• Evaluate σDPS
pA /AσDPS

pp .

In principle, Pythia allows users to implement any isotope with given values of Z and N.

Eight nuclei: 4He, 6Li, 12C ,16O, 63Cu, 129Xe, 197Au and 208Pb are available by default. Since a

computation of a total DPS cross section according to the aforementioned algorithm can take tens

of hours (depending on a chosen nucleus and a system performance), we decided to work only with

already implemented nuclei and use the fit in Eq. 5.11 for better visualisation of our results and for

comparison against Strikman & Treleani model.

Our results for σDPS
pA /AσDPS

pp are given in Table 7.2. In our simulations we were triggering on

events with at least four jets with p⊥ > 20 GeV. We have also performed a stability check by varying

a parameter SDTries which is a number of attempts to construct kinematics for double absorptive

processes as in Fig. 7.1 b). By comparing values of σDPS
pA /AσDPS

pp evaluated at different values of

SDTries parameter, we see that fluctuations of σDPS
pA /AσDPS

pp do not exceed a few percent level, see

Table 7.1

A comparison against Strikman & Treleani model is given in Fig. 7.3 and Table 7.2. The Pythia

setup we have used is given in Table 7.3 and Table 7.4. In order to compare our results against

Strikman & Treleani model we have tuned σeff in order to get an agreement in the value of the

DPS enhancement factor σDPS
pA /AσDPS

pp for 208Pb. We see that by choosing σeff = 11 mb we can

get a satisfactory agreement between both models not only for 208Pb but also for other for heavy

isotopes: 63Cu, 129Xe and 197Au.

It could be very tempting to interpret Angantyr simulations as a fake data and to use main

formula of Strikman & Treleani model, Eq. 5.7, for a fitting procedure to extract a value of σeff

out of Angantyr simulations. However, due to the aforementioned differences between both models

such procedure will not be correct. Also, as it was shown by Blok et al. [216], a treatment of DPS

for light nuclei differs from a treatment of DPS for heavy nuclei due to the presence of additional

DPS contributions, as shown in Fig 2.12 c) and d), which become less important for large values of

A, see [216] and Chapter 2.6. Whereas the MPI model of Pythia partially accounts2 for processes

1Pythia 8 allows to generate always two hard interactions in a given event by setting SecondHard:generate = on.
However, usage of this flag together with Angantyr is not supported and will lead to wrong results.

2Namely, it accounts only for a gluon splitting of a type g → qq̄, for details see [260].
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Figure 7.3: A DPS enhancement factor σDPS
pA /AσDPS

pp . Comparison between theoretical predictions
of Strikman and Treleani [213] and Pythia’s (Angantyr) simulations.

shown in Fig 2.12 c) and d), incorporation of such terms in the Strikman & Treleani framework is a

non-trivial task, see [200] and [202].

Nucleus Angantyr SDTries = 1 Angantyr SDTries = 2
4He 1.12 1.12e+00
6Li 1.17 1.18e+00
12C 1.32 1.34e+00
16O 1.43 1.43e+00

63Cu 2.03 2.03e+00
129Xe 2.46 2.43e+00
197Au 2.75 2.75e+00
208Pb 2.78 2.83e+00

Table 7.1: Predictions for enhancement factor for DPS in pA collisions at
√
S = 5012 GeV (106

Pythia calls).

Nucleus Angantyr SDTries = 1 Strikman & Treleani
4He 1.12 1.21
6Li 1.17 1.30
12C 1.32 1.47
16O 1.43 1.56

63Cu 2.03 2.09
129Xe 2.46 2.51
197Au 2.75 2.73
208Pb 2.78 2.77
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Table 7.2: Predictions for enhancement factor σDPS
pA /AσDPS

pp at
√
S = 5012 GeV (106 Pythia calls).

In Strikman & Treleani model we set σeff = 11 mb.

Pythia Master Switch Value

Random:setSeed on

HardQCD:all on

PartonLevel:mpi on

PartonLevel:Remnants on

Check:event on

PartonLevel:isr off

PartonLevel:fsr off

ColourReconnection:reconnect off

HadronLevel:all off

Table 7.3: Values of the master switches of Pythia we use in our pA simulations.

Pythia Flag Value

Beams:idA 2212

Beams:idB 1000020040 (as an example for 4He )

Beams:eA 4000 GeV

Beams:eB 1570 GeV

Beams:frameType 2

PDF:pSet LHAPDF6:MSTW2008lo68cl

PhaseSpace:pTHatMin 20.0 GeV

SigmaProcess:renormScale2 2

SigmaProcess:factorScale2 2

Table 7.4: Pythia beam parameters, scales, PDFs and cuts we use in our pA simulations.

7.4 Impact of rapidity cuts

In the simulations in section 7.3 we were triggering on events with at least four jets with p⊥> 20 GeV

without imposing any cuts on their rapidities. However, it is known that activity in pA collisions

depends on rapidity of produced particles in a non-trivial way. Namely, as it was observed by the first

time by Busza et al. [288], the charged multiplicity distribution dNch/dη in pA collisions grows for

the negative values of η (assuming that the nucleus A is located in the negative direction of the η-axis),

see Fig. 7.2. There are several explanation of this phenomenon. Originally the growth of activity

in the charged multiplicity distributions was explained by the original non-perturbative “wounded

nucleon model” [285] - [287]. The Angantyr model of pA collisions can be seen as a perturbative

version of the “wounded nucleon model” which includes which includes MPI produced according

to Eq. 7.6 with modifications described in section 7.2. As shown in Fig. 7.2 the Angantyr model

correctly describes the aforementioned enhancement. Since the particle production in Angantyr

relies on the MPI model of the Pythia event generator the charged multiplicity distribution should

be correlated with production of (mini-)jets. More precisely, the growth of charged multiplicity
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dNch/dη for negative η values in Angantyr model is inextricably connected with growth of a number

of sub-scatterings in a given event, see Eq. 7.6 and Eq. 7.7. Therefore, it is natural to assume that

in the Angantyr model probability to generate an event of a DPS II type will depend on η in a way

similar to a dNch/dη distribution. In order to check this we evaluate σDPS
pA /AσDPS

pp for events with

at least four jets with p⊥>20 GeV and at least one jet with a pseudo rapidity value smaller3 than a

certain value ηcut. Obviously, additional η cuts will reduce the total DPS cross section in pp and

pA collisions. Nevertheless, one could expect that the total DPS cross section in the pA case will

decrease much slower than corresponding one in the pp case. As a consequence, the enhancement

factor σDPS
pA /AσDPS

pp will grow since in the Angantyr model probability to generate a processes of

DPS II type will grow for small negative values of η.

The results are presented in Fig. 7.4. In order to study how the DPS enhancement factor

σDPS
pA /AσDPS

pp depends on rapidity cuts we have used the same set up as before but with additional

cuts ηcut = −1, ηcut = −2 and ηcut = −3. We see that indeed the ratio σDPS
pA /AσDPS

pp demonstrates

a strong dependence on the value of ηcut. The experimental verification of the growth of the DPS

enhancement factor σDPS
pA /AσDPS

pp due to the additional rapidity cut predicted by the Angantyr

model could, in principle, provide a better way to control the double absorptive processes shown in

Fig. 7.1 a).
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Figure 7.4: Dependence of the enhancement factor σDPS
pA /AσDPS

pp on η cuts. Predictions of Pythia
(Angantyr). Here orange, cyan and magenta curves correspond to four jet DPS simulations with at
least one jet with η smaller than −1, −2 and −3 correspondingly.

7.5 Conclusions

We have demonstrated that the Angantyr model of pA collisions in Pythia 8 predicts the A-

dependence of a DPS enhancement factor σDPS
pA /AσDPS

pp which agrees with the one predicted in the

pioneering paper of Strikman and Treleani [213] at a qualitative level. This result can be seen as

3In our simulations we choose a pseudo rapidity axis to run in direction from a nucleus to a proton.
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an additional validation of the Angantyr’s approach to double absorbtive processes as described in

section 7.2. Furthermore, the correct A-dependence in the Angantyr model means that, apart from

“standard” applications, one can use Angantyr for standalone studies of the DPS in pA collisions. In

this case users can benefit not only from evaluation of a total cross section, but also from the power

of most of the models implemented in Pythia, e. g. ISR and FSR models, colour reconnections and

hadronization models etc.

We also have studied how (pseudo)rapidity cuts affect the number of MPIs in a given event

and therefore the behaviour of σDPS
pA /AσDPS

pp . The growth of σDPS
pA /AσDPS

pp is a natural consequence

of (pseudo)rapidity dependence of activity in pA collisions predicted by the “wounded nucleon

model” [285] - [287] and is built into the Angantyr model. We also argue that the experimental

verification of the enhancement of the dependence of the σDPS
pA /AσDPS

pp ratio could provide a way to

better control the number of secondary absorptive interaction in pA collisions.

Due to the various conceptual differences between Angantyr and Strikman & Treleani models

one should not expect to obtain exact agreement between their predictions. A complexity of

the problem of DPS in pA collisions requires a detailed study of various non-trivial effects like

partonic correlations, cold nuclear matter effects and additional DPS contributions, as it was

pointed out in [216]. Therefore, in the absence of experimental studies of DPS in pA collisions, a

comparison between predictions of Angantyr and improved Strikman & Treleani model (for example,

with included correlations in x-space) may help us to identify key ingredients essential for correct

modelling of DPS in pA collisions which, in its turn, would lead to a better understanding of proton’s

structure and the dynamics of its constituents.

Finally, we shall note that, as it was proposed in [290], the contribution from DPS (MPI) in pA

collision may be necessary to explain the collected experimental data. Therefore, the application of

the model of [290] together with the Angantyr model to the available data on pA collisions can be

beneficial for the studies of DPS (MPI) phenomena in pA collisions. We also should stress that in

the experimental studies of pA collisions one usually expresses measurable quantities, e. g. charged

multiplicity distributions, as functions of centrality which, in turn, is a function of the distance

between an incident proton and a center of a nucleus in a given pA collision. In practice it is

performed with the help of so called Glauber modelling, see [292]. Therefore, a Monte Carlo event

generators for pA collisions, has to support Glauber modelling, in order to be able to simulate events

for different values of centrality. Since, as we have demonstrated in this chapter, the Angantyr

model of pA collisions can reproduce results of Strikman & Treleani and because Angantyr includes

a facility for Glauber modelling we consider Angantyr as a perspective Monte Carlo tool for the

future studies of DPS (MPI) in pA collisions.

Before closing the discussion we shall also mentioned that recently results on combination of

Strikman & Treleani model together with Glauber modelling were published by Alvioli et al. [291].

The detailed comparison between the predictions of Angantyr and the results of [291] can, therefore,

be useful for the modelling of the DPS processes in pA collision.



Chapter 8

Summary and outlook

In this thesis we have studied the four-jet DPS production in pp and pA collisions within different

theoretical frameworks.

We have started by giving in Chapter 1 a short introduction to the main concepts of QCD. Then,

in Chapter 2 we have provided a brief historical review of the theoretical and experimental studies

of the DPS phenomena. We have also discussed the state-of-the-art in the theoretical description of

the DPS processes in pp and pA collisions including evolution of dPDFs, connection between DPS

cross section and two-parton correlation functions, existing problems in the formulation of DPS in

terms of collinear dPDFs and solutions to them proposed by different authors. In Chapter 3 we

have given a pedagogical introduction to the Monte Carlo algorithms we use to simulate the four-jet

DPS production processes.

In Chapter 4 we have performed a phenomenological study of the four-jet DPS production in pp

collisions. In order to do that we have developed a standalone Monte Carlo code supporting the

work with different models of dPDFs. With its help we have studied how different models of dPDFs

affect the four-jet DPS production. As a baseline for our DPS simulations we have used the simple

factorized product of single collinear PDFs multiplied by the step function to preserve conservation

of longitudinal momentum (“naive” dPDFs). The differential DPS distributions generated with

the “naive” dPDFs have been compared against corresponding distributions obtained with Gaunt

& Stirling dPDFs (GS09 dPDFs) [173]. It has been found that the leading jet p⊥ DPS distributions

demonstrate a modest dependence on the choice of the dPDFs. However, we have demonstrated

that the distributions in maximal rapidity difference ∆Y = max|yi − yj| obtained with GS09 dPDFs

significantly differ from the distributions obtained with “naive” dPDFs at high values of ∆Y. We

have also studied the interplay between DPS and SPS contributions to the four-jet production and

confirmed earlier results on four-jet DPS production obtained by Maciu la and Szczurek [230].

Our Monte Carlo code supports generation of colour charges of particles produced in DPS within

the leading colour approximation which is required for the correct modelling of the colour coherence

phenomena in parton showering processes. This, together with modifications of the LHEF standard

[81] and the Pythia code [255] - [257] described in Appendix G, allows to combine our DPS code

with various models implemented in the Pythia event generator. By combining our four-jet DPS

simulations with the ISR and FSR models in Pythia we have improved the analysis of [230]. Namely,

we have studied the impact of the ISR and FSR effects on our parton-level simulations and found

that parton shower effects do not spoil the separation of the DPS and SPS events produced at

171
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low-p⊥ or high-∆Y values predicted in [234]. Furthermore, incorporation of the ISR and FSR effects

into our simulations also gave us a possibility to study the effects due to the GS09 dPDFs not only

for the leading jet p⊥ and ∆Y = max|yi− yj| distributions but also for other DPS-sensitive variables

based upon transverse momenta imbalance and the azimuthal angles of produced jets as listed in

Appendix E. We have found that GS09 effects in four-jet DPS production significantly affect only

DPS distributions in ∆Y.

The DPS processes in pA collisions demonstrate different dependence on the atomic mass number

A as the SPS processes [114], [213], [215], [216]. In Chapter 5 we have extended our simulation of

the four-jet DPS production from pp to pA collisions within the framework proposed by Treleani

and Strikman [213]. We have argued that the study of the four-jet DPS production in pA collisions

for the set of jet cuts as we have used in Chapter 4 leads to a strong separation between DPS signal

and SPS background even for the collision energies smaller than hadronic LHC collision energies.

We also have studied the overall impact of cold nuclear matter effects encapsulated in the nPDFs

on our DPS simulations within the Treleani & Strikman framework. The impact of the nPDFs has

been found to be very modest.

In Chapter 6 we have performed a detailed comparison between GS09 and Pythia models of

dPDFs. It has been found that dPDFs in the Pythia model obey the same sum rules as GS09 dPDFs

(GS sum rules) [173]. The comparison between DPS distributions simulated with GS09, Pythia

and “naive” dPDFs shows that the GS sum rules induce important correlations in momentum and

flavour which manifest themselves for the four-jet DPS production at high values of ∆Y.

In Chapter 7 we have studied the four-jet DPS production within the Angantyr model [271]

being used in the Pythia event generator to simulate pA collisions. We have shown that the way

Angantyr models MPI in pA collisions leads to the enhancement of the DPS cross section similar to

the one predicted by Treleani and Strikman in [213]. We have also found that the Angantyr model

predicts the strong dependence of the number of the DPS processes on the chosen rapidity cuts.

This dependence, being verified experimentally, could help to study the DPS phenomena in pA

collisions.

Before finishing this thesis, we would like to make several comments on future possible directions

of our research. The modifications to the Pythia code and the LHEF standard [81] described in

Appendix G allow Pythia read DPS events from Les-Houches files and to add various effects, e. g.

ISR and FSR effects, hadronization and decay of produced hadrons etc, on top of them. This

approach is beneficial for the DPS modelling since it allows to combine Pythia with various models

of dPDFs without implementing them into Pythia’s code. During the work on this theses we have

developed a standalone code to produce DPS events for the four-jet DPS production. The structure

of our DPS code allows users to work with different models of dPDFs and easily implement new

types of DPS processes, e. g. three-jet plus photon DPS production, heavy-flavour DPS production

etc. This opens new directions for our future research. For example, recently, non-trivial correlations

between electrons due to the heavy-flavour hadron decays were observed in Monte Carlo simulations

performed with the Pythia code [212]. It was argued in [212] that the strength of predicted effects

is affected by multiplicity of interactions in MPI events. The combination of the Pythia event

generator with our DPS code allows to simulate the production of electrons due to the decays of

heavy-flavour hadrons produced via DPS processes with different models of dPDFs. Such analysis
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would help to find how strongly the results of [212] are affected by different models of dPDFs which,

in turn, can be beneficial for experimental studies of heavy-flavour production.

In this thesis we have studied three different models of dPDFs, namely GS09, “naive” and

Pythia dPDFs. Among these three models only GS09 model accounts for the evolution of dPDFs

due to the dDGLAP evolution equations. The GS09 dPDFs were produced under the assumption of

factorization of gPDFs into collinear and transverse pieces. However, the theoretical study performed

by Gaunt in [191] and by Diehl et al. in [192], [193] has demonstrated that the assumption about

factorization of gPDFs into longitudinal and transverse pieces is inconsistent with the field-theoretical

formulation of DPS and leads to incorrect description of DPS in kinematic regions in which two

partons inside a proton originate from the perturbative splitting of a single parton. A solution to

this problem, which allows for the definition of dPDF as operator matrix elements in a proton,

and which can be used at higher orders in perturbation theory was proposed by Diehl, Gaunt and

Schönwald in [200]. However, to the best of our knowledge, no phenomenological studies within

the framework of [200] were performed. The phenomenological applications of the results of Diehl,

Gaunt and Schönwald imply the usage of gPDFs which cannot be factorized into a product of

collinear and transverse pieces and obey a system of homogeneous dDGLAP evolution equations.

Therefore, a combination of our DPS code with a numerical tool to solve both homogeneous and

inhomogeneous dDGLAP evolution equations for different non-perturbative inputs will result in a

multi-task package which can be interfaced to Pythia to perform various studies of DPS phenomena

in pp and pA collisions. In particular, it will allow to perform phenomenological studies of DPS

within the framework of Diehl, Gaunt and Schönwald which, in turn, will improve DPS simulations

for the aforementioned problematic regions of a DPS phase space. Our preliminary results on

solution of dDGLAP evolution equation are given in Appendix J. We have studied in detail two

approaches to solve dDGLAP evolution equations. Namely, the approach based upon Chebyshev

polynomial approximation which was used in [180] and the approached based upon combination

of Runge-Kutta and Newton–Cotes methods which was used in [173]. However, our code requires

some optimisation and improvement of precision which we leave for future work.

The aforementioned problem of correct treatment of DPS processes in kinematic regions in

which two partons inside a proton originate from the perturbative splitting of a single parton is

inextricably connected with the modelling of ISR effects in DPS processes. Therefore, our approach

to study the impact of ISR effects on our DPS simulations can be seen only as an approximation

since it does not include a correct backward evolution for the “1v2” DPS processes. Recently, the

first results on the modelling of the ISR for “1v2” DPS processes within the framework of Diehl,

Gaunt and Schönwald were reported [211]. The comparison between our DPS simulations and the

results of [211] would help to estimate the error due to the approximate modelling of the ISR effects

in our DPS simulations as well as the strength of effects due to the “1v2” splitting processes.

Another interesting topic is the application of the Angantyr model of pA collisions in the analysis

of the experimental data, since, as it was argued in [290], the contribution from DPS (MPI) processes

in pA collision may be necessary to explain some of the existing measurements. Therefore, the

application of the model of [290] together with the Angantyr model to the available data on pA

collisions can be beneficial for the studies of DPS (MPI) phenomena in pA collisions. As we have

demonstrated in Chapter 7, the Angatyr model gives predictions very similar to the results obtained
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by Treleani and Strikman in [213] which is essential for the correct modelling of DPS processes in

pA collisions. However, apart from that, Angantyr offers a possibility to build complete exclusive

hadronic final states which makes it a perspective and powerful tool for future studies of both DPS

and MPI phenomena in pA collisions.



Appendix A

SU(N) symmetry group

The SU(3) group is a particular case of SU(N) group (a group of N ×N linearly independent unitary

matrices with det(U) = 1). The generators of SU(N) are traceless tr
{
ti
}

= 0. There are N2 − 1

linearly independent matrices satisfying these conditions.

Here we list the basic SU(3) properties. The SU(3) generators ti (i = 1, 2, ..., 8) are hermitian,

traceless matrices which obey

[
ti, tj

]
= if ijktk, (A.1)

where f ijk are the group structure constants.

They also obey the Jacobi identity[
ti,
[
tj , tk

]]
+
[
tk,
[
ti, tj

]]
+
[
tj ,
[
tk, ti

]]
= 0,

which is a general property of a Lie algebra.

In general one can find a basis where all group generators are given by block-diagonal matrices.

Such representations are of particular importance and called irreducible representations. The

following equation fixes the normalization of group generators

tr
{
tirt

j
r

}
= TRδ

ij (A.2)

where TR is a constant for each irreducible representation. An irreducible representation of the SU(N)

symmetry group given by traceless Hermitian N ×N matrices is called fundamental representation.

In the following we denote SU(N) generators in the fundamental representation as tiN .

As soon as the normalization is fixed one can determine the structure constants which are given

by

f ijk = − i

TR
tr
{[
ti, tj

]
tk
}
, (A.3)

which implies that f ijk is antisymmetric under permutations of i, j and k indices.

Another very important example of irreducible representations is so called adjoint representation
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given by
(
N2 − 1

)
×
(
N2 − 1

)
matrices defined as(

tjG

)
ik

= if ijk, (A.4)

where a subscript G was to use label this particular case of irreducible representation. One can

show that a gauge field acting on a field in the adjoint representation is

(Dµφ)i = ∂µφi − igAjµ (tiG)ik φk = ∂µφi + gf ijk Ajµ φk. (A.5)

Let us consider the operator t2 defined as t2 ≡ ti ti. It is easy to show that

[
tj , t2

]
=
[
tj , titi

]
= if jik

{
tk, ti

}
= 0, (A.6)

due to the antisymmetry of f ijk. It implies that t2 is invariant of a Lie algebra and hence takes a

constant value for each irreducible representation.

Therefore, for the aforementioned fundamental and ajoint representations we express t2 as

tiN t
i
N = CF , (A.7)

f iklf jkl = CAδ
ij , (A.8)

where constants CF and CA are called quadratic Casimir operators.

In this thesis we choose normalization of the group generator such that TR = 1/2 which leads

to1

CF =
N2 − 1

2N
,

CA = N. (A.9)

1For the derivation see, for example, [5].



Appendix B

Mandelstam variables

Consider a 2→ 2 scattering process

p+ p′ → k + k′, (B.1)

where p and p′ are four momenta of particles in initial state and k, k′ are four momenta of particles in

a final state. In order to describe such process one may form different Lorentz-invariant combinations

our of four momenta of scattering particles. A common choice is to consider the following invariants

ŝ =
(
p+ p′

)2
=
(
k + k′

)2
,

t̂ = (k − p)2 =
(
k′ − p′

)2
,

û =
(
k′ − p

)2
=
(
k − p′

)2
.

These variables have an important property

ŝ+ t̂+ û =
∑
i

m2
i , (B.2)

where mi is a mass of i-th particle.
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Light-cone coordinates

Here we briefly sketch the properties of the light-cone variables discussed in [293].

Let us define x+ and x− as

x+ =
x0 + x3

√
2

,

x− =
x0 − x3

√
2

.

In these new coordinates a four-vector xµ = {x0, x1, x2, x3} is written as xµ = {x+, x−,x}, where

x = {x1, x2}. (C.1)

In the light-cone coordinates the metric tensor ηµν has the following non-zero components

η01 = η10 = 1, (C.2)

η22 = η33 = −1, (C.3)

which implies that a scalar product of two four-vectors aµ and bµ now reads

aµbµ = a−b+ + a+b− − a · b. (C.4)

If aµ = bµ = xµ a scalar product aµbµ reduces to

xµxµ = 2x−x+ − x 2. (C.5)

A boost along x3-axis

x0 =
x0 + vx3

√
1− v2

x3 =
vx0 + x3

√
1− v2

,
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then in the light-cone coordinates is written as

x+ =
1 + u√
1− v2

v+ =

√
1 + v√
1− v v

+ = eψv+,

x− =
1− u√
1− v2

v+ =

√
1− v√
1− v v

+ = e−ψv−,

where

ψ =
1

2
log

(
1 + v

1− v

)
. (C.6)



Appendix D

Leading order 2→ 2 QCD cross

sections

Here we list all 2→ 2 LO QCD processes being used as building blocks to construct DPS events.

Process Cross section

g g → g g dσ
dt̂

=
9πα2

s
2ŝ2

(
3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2

)
q g → q g dσ

dt̂
=

4πα2
s

8ŝ2

(
9
4
ŝ2+û2

t̂2
− û

ŝ
− ŝ

û

)
qi qj → qi qj , qi 6= qj dσ

dt̂
=

4πα2
s

9ŝ2

(
ŝ2+û2

t̂2

)
g g → q q̄ dσ

dt̂
=

4πα2
s

9ŝ2

(
û
t̂

+ t̂
û
− 9

4
t̂2+û2

ŝ2

)
q q̄ → q q̄ dσ

dt̂
=

4πα2
s

9ŝ2

(
ŝ2+û2

t̂2
+ t̂2+û2

ŝ2
− 2

3
û2

ŝt̂

)
q q → q q dσ

dt̂
=

4πα2
s

9ŝ2

(
û2+ŝ2

t̂2
+ t̂2+ŝ2

û2 − 2
3
ŝ2

ût̂

)
q q̄ → g g dσ

dt̂
=

32πα2
s

27ŝ2

(
û
t̂

+ t̂
û
− 9

4
t̂2+û2

ŝ2

)
qi q̄i → qj q̄j , qi 6= qj dσ

dt̂
=

4πα2
s

9ŝ2

(
t̂2+û2

ŝ2

)
Table D.1: List of 2→ 2 LO QCD processes contributing to pp

DPS−−−→ 4j

process. Here all quarks are considered to be massless.
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Appendix E

DPS-sensitive variables

In this section we are going to list the DPS sensitive variables, experimental cuts and jet reconstruc-

tion algorithms being used in the measurements of the four-jet DPS production performed by the

ATLAS collaboration [145]

Variable Definition

∆ij =
| #»p i⊥+ #»p j⊥|
pi⊥+pj⊥

Transverse momentum imbalance i, j = 1, 2, 3, 4

∆φij = |φi − φj | Azimuthal angle difference i, j = 1, 2, 3, 4

∆yij = |yi − yj | Rapidity difference i, j = 1, 2, 3, 4

|φ1+2 − φ3+4|, |φ1+3 − φ2+4|, |φ1+4 − φ2+3| The term φi+j denotes the azimuthal angle

of the four-vector obtained by the sum of jets i and j

Table E.1: List of DPS sensitive variables used in [145].

Parameter Value√
S 7 TeV

set A Njet ≥ 2 p⊥1 > 20 GeV p⊥2 > 20 GeV

set B Njet ≥ 2 p⊥1 > 42.5 GeV p⊥2 > 20 GeV

set Four-jet Njet ≥ 4 p⊥1 > 42.5 GeV p⊥2,3,4 > 20 GeV

|η| < 4.4

Jet reconstruction algorithm anti-kT

Jet radius 0.6

Table E.2: Scenario in [145].

The complete DPS events were built using di-jet events from sets A and B.
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Appendix F

List of DPS processes studied in the

literature
In Table F.1 we list phenomenological studies for various DPS production processes.

Process Reference

pp
DPS−−−→ π0π0; dA

DPS−−−→ π0π0 [222]

pA
DPS−−−→ cc̄cc̄, bb̄cc̄, bb̄bb̄ [228]

pA
DPS−−−→W+W+, W−W− [223], [225]

AA
DPS−−−→ J/ψ + J/ψ [224]

pA (AA)
DPS−−−→W+W+, W−W−,

pA (AA)
DPS−−−→ J/ψ + J/ψ, J/ψ + Υ,

pA (AA)
DPS−−−→ J/ψ +W,J/ψ + Z,

pA (AA)
DPS−−−→ Υ + Υ,Υ +W,Υ + Z

[225]

pp
DPS−−−→ 4j [119], [121], [122], [229], [230], [231], [232], [233]

pp
DPS−−−→ 2γ + 2j [239]

pp
DPS−−−→ D0B+, B+B+ [226]

pp
DPS−−−→ bb̄bb̄ [227]

pp
DPS−−−→ bb̄bb̄, cc̄cc̄, cc̄bb̄ [228]

pp
DPS−−−→ cc̄ + 2j, pp

DPS−−−→ D0 + 2j

and pp
DPS−−−→ D0D̄0 + 2j

[234]

pp
DPS−−−→ J/ψ + J/ψ [235], [236]

pp
DPS−−−→ J/ψ + J/ψ → µ−µ+ + µ−µ+,

pp
DPS−−−→ γ? + γ? → µ−µ+ + µ−µ+

[237]

pp
DPS−−−→W+W+, W−W− [242], [238], [243], [209]

pp
DPS−−−→W + jj, Z + jj [243]

pp
DPS−−−→W±(Z) + H [240]

pp
DPS−−−→ bb̄ + H [241]

Table F.1: Phenomenological studies for various DPS production processes.
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Appendix G

Modifications of the Pythia code and

the LHEF standard

Here we describe modifications to the Pythia code and the LHEF standard necessary to read and

“shower” DPS events from LHE files. The checks of these modifications are given in Chapter 4.9.

The modifications of the Pythia code described in this section are to appear in the next public

release of the Pythia event generator1.

The Pythia event generator supports work with the LHEF standard [81]. Therefore, in order

to add parton shower effects to our DPS simulations, one would first generate LHE files with

DPS events and then supply them to Pythia for showering using SecondHard:generate = on and

PartonLevel:MPI = off settings. However, there are some technical difficulties which do not allow

to apply this approach directly. First of all the Pythia code earlier than 8.240 does not support the

output of DPS events into LHE files2. Starting from the version 8.240 a possibility to output DPS

events according to the extended LHEF standard was added, see [104]. An example of the DPS

event record created by Pythia according to a modified LHEF standard is shown in Fig. G.1. The

unmodified LHEF standard is explained in Fig. 3.5. By comparing the modified LHEF output in Fig.

G.1 with the standard LHEF output shown in Fig. 3.5 we see that some important modifications

were introduced. We see that two di-jet events, namely gg → cc̄ and cu→ cu are now stacked in

the same event3. The extension of the LHEF standard to the DPS events also requires the correct

mother-daughter information as it is shown in Fig. G.1. Namely, the parent indices 1 and 2 of the

c, c̄ pair tell us that it originates from two initial-state gluons (first and second lines in the event

record) and the parent indices 5 and 6 of the c, u pair tell us that it originates from the initial-state

c, u pair (fifth and sixth lines in the event record)4. In addition to the aforementioned changes a

new line starting with the key-word #scaleShowers was added. It contains factorization scales for

the first and second hard interactions correspondingly.

1At the moment of writing of this thesis the most recent Pythia release is Pythia 8.240.
2More precisely, an attempt to output DPS events into an LHE file in the Pythia with version < 8.240 would lead

to the wrong mother-daughter information between partons produced in the second hard interaction. Moreover, the
LHEF standard does not allow to output information about the second factorization scale and, therefore, has to be
extended.

3In LHE files different particles are distinguished according to their Particle Data Group (PDG) codes [82]. For
example, for g, d, u, s, c, b the corresponding PDG codes are given by 21, 1, 2, 3, 4. The PDG codes of anti-quarks are
equal to the PDG codes of corresponding quarks taken with a negative sign.

4Note that the numbering of lines between <event> and </event> tags starts from zero.
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<LesHouchesEvents ve r s i o n=” 1 .0 ”>
<event>
8 9999 1.000000 e+00 2.218709 e+01 7.694236 e−03 1.675694 e−01

21 −1 0 0 101 102 0 .0 0 .0 171 .0 171 .0 0 . 0 . 9 .
21 −1 0 0 103 101 0 .0 0 .0 −6.2 6 .2 0 . 0 . 9 .

4 1 1 2 103 0 −16.0 −15.3 17 .3 28 .1 1 .5 0 . 9 .
−4 1 1 2 0 102 16 .0 15 .3 14 .8 14 .9 1 .5 0 . 9 .

4 −1 0 0 104 0 0 .0 0 .0 2 . 8 2 .8 0 . 0 . 9 .
2 −1 0 0 105 0 0 .0 0 .0 −944.7 944 .7 0 . 0 . 9 .
4 1 5 6 105 0 22 .5 12 .5 −61.0 66 .3 1 .5 0 . 9 .
2 1 5 6 104 0 −22.5 −12.5 −880.9 881 .3 0 .3 0 . 9 .

#pdf 21 21 2 .637 e−02 9 .601 e−04 2 .219 e+01 3 .618 e+00 2 .938 e+01
#sca leShowers 2 .218709 e+01 2.575019 e+01
</event>
</LesHouchesEvents>

Figure G.1: An extension of the Les-Houches version=“1.0” standard to the DPS events. In order
to ease the reading we keep only one digit after comma for the components of the four-momenta.

We also should note here that even though Pythia version = “8.240” can generate and output

DPS events into LHE files, as shown in Fig. G.1, it cannot “shower” them correctly. Sev-

eral important modifications have to be added. Namely, in the file Pythia.cc after the line

“event.scale( process.scale() );” one also has to add

“event.scaleSecond(process.scaleSecond());” inside of the Pythia::next() method. One

also has to include the same two lines in the file Pythia.cc after each block of the code is

executed if the logical conditions if (!doPartonLevel) or if (!doHadronLevel) are true. In

addition to it one has to modify the files PartonLevel.cc and ProcessContainer.cc. In the file

PartonLevel.cc one hast to replace the condition “if (doSecondHard)” by “if (twoHard)” in

the method PartonLevel::next, see Fig. G.2. This replacement is necessary to set the scales of

ISR, FSR and MPI evolution properly while reading LHE files with DPS events since the boolean

variable twoHard is set to true if during the initialization of Pythia we set

SecondHard:generate = on. Moreover, in the file ProcessContainer.cc one has to add changes

as shown in Fig. G.3. The reason is that in the Pythia event generator one can assign the MPI,

ISR and FSR evolution scales to each parton individually.

One also has to keep in mind that the production of the resonances requires a different scales of

the MPI, ISR and FSR evolution5. While reading DPS events out of the LHE files these scales have

to be initialized properly. After introducing the aforementioned modifications the MPI, ISR and

FSR scales of the first (second) hard process are set to the factorization scale of the first (second)

hard process and the scale of the resonance production is set to the mass of the resonance, see

Fig. G.3.

Before closing this section we also need to stress that for the correct work of the afore-

mentioned modifications to Pythia version = “8.240” the LHE events have to be written as

in Fig. G.1 with a necessary tag <LesHouchesEvents version="1.0">. If instead one will try to

use <LesHouchesEvents version="3.0"> then Pythia will still read and shower DPS events but in

5In our analysis we do not have a production of resonances. Therefore, the modifications of the Pyhia code related
to the correct setting of the MPI, ISR and FSR scales for resonances while reading DPS events from the LHE files are
not necessary for our four-jet DPS study
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i f ( doSecondHard ) {
pTscaleRad = max( pTscaleRad , p roce s s . s ca l eSecond ( ) ) ;
pTscaleMPI = min ( pTscaleMPI , p roce s s . s ca l eSecond ( ) ) ;

}

i f ( twoHard ) {
pTscaleRad = max( pTscaleRad , p roce s s . s ca l eSecond ( ) ) ;
pTscaleMPI = min ( pTscaleMPI , p roce s s . s ca l eSecond ( ) ) ;

}

Figure G.2: Logical condition to set the ISR, FSR and MPI scales in the method PartonLevel::next

of the class PartonLevel.cc. Upper block of code: implementation in Pythia 8.240. Lower block
of code: necessary changes to initialize DPS model properly while reading LHE events.

a wrong way. The reason is that the reading of the LHE version = “1” files and the LHE version = “3”

files in the Pythia code is performed by different routines in the LesHouches.cc and LHEF3.cc

files correspondingly. Whereas the reader of the LHE version = “1” files was adopted for the DPS

events the reader of the LHE version = “3” files still requires important modifications. Therefore,

the usage of the tag <LesHouchesEvents version="3.0"> will invoke reading routines from the

file LHEF3.cc which will lead to the wrong assignment of the mother-daughter labels and MPI, ISR

and FSR scales.
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// Find s c a l e from which to beg in MPI/ISR/FSR evo l u t i on .
sca lup = lhaUpPtr−>s c a l e ( ) ;
s c a l e = sca lup ;
double s ca l ePr = ( s c a l e < 0 . ) ? s q r t (Q2Fac ( ) ) : s c a l e ;
p roc e s s . s c a l e ( s ca l ePr ) ;
i f ( twoHard ) p roce s s . s ca l eSecond ( s ca l ePr ) ;

// For resonance decay produc t s use resonance mass as s c a l e .
double scaleNow = sca l ePr ;
i f ( mother1 > 4 && ! useStr i c tLHEFsca les ) scaleNow = proce s s [ mother1 ] .m( ) ;
i f ( scaleShow >= 0 . 0 ) scaleNow = scaleShow ;

// Find s c a l e from which to beg in MPI/ISR/FSR evo l u t i on .
sca lup = lhaUpPtr−>s c a l e ( ) ;
s c a l e = sca lup ;
double s ca l ePr = ( s c a l e < 0 . ) ? s q r t (Q2Fac ( ) ) : s c a l e ;
p roc e s s . s c a l e ( s ca l ePr ) ;
i f ( twoHard ) p roce s s . s ca l eSecond ( s ca l ePr ) ;

i f ( lhaUpPtr−>s ca l eShower s I sSe t ( ) ) {
proce s s . s c a l e ( lhaUpPtr−>sca leShowers (0 ) ) ;
p roc e s s . s ca l eSecond ( lhaUpPtr−>sca leShowers (1 ) ) ;

}

double s ca l ePr2 = proce s s . s ca l eSecond ( ) ;

// For resonance decay produc t s use resonance mass as s c a l e .
double scaleNow = ( i I n < 3) ? s ca l ePr : s ca l ePr2 ;
int motherBeg = ( i I n < 3) ? 4 : 4 + nOffsetSecond ;
i f ( mother1 > motherBeg && ! useStr i c tLHEFsca les )

scaleNow = proce s s [ mother1 ] .m( ) ;
i f ( scaleShow >= 0 . 0 ) scaleNow = scaleShow ;

Figure G.3: Logical condition to set the ISR, FSR and MPI scales in the method
ProcessContainer::constructProcess of the class ProcessContainer. Upper block of code:
current implementation in Pythia 8.240. Lower block of code: necessary changes to initialize the
DPS model properly while reading LHE events.



Appendix H

Accessing dPDFs being used in the

Pythia event generator

The standard usage of the Pythia event generator does not allow the user to access dPDFs being

used to simulate DPS processes. However, using the methods of the class BeamParticle one

calculate the value of the PDF being used for the second hard interaction f id2
Mod(x2, Q

2
2) which is

modified according to the value of the PDF f id1
Raw(x1, Q

2
1) being used for the first hard interaction.

The corresponding dPDF, therefore, is given by the product

Did1,id2(x1, x2, Q
2
1, Q

2
2) = f id1

Raw(x1, Q
2
1) f id2

Mod(x2, Q
2
2). (H.1)

In Fig. H we provide an example of a C++ function which allows to get access to modified

PDFs being used to produce second hard process. As arguments it takes the reference beam to

the object of the BeamParticle type and the PDG id number id1 (id2), Bjorken x x1 (x2) and

factorization scale squared Q2
1 (Q2

2) of the first (second) initial state parton. One can get the

reference to the beam object by setting BeamParticle &beam = pythia.beamA; in the analysis

code after the initialization of the Pythia object.

double second xPDF ( BeamParticle &beam , int id1 , int id2 ,

double x1 , double x2 ,

double Q12 , double Q22) {
double r e s = 0 . ;

i f ( x1 + x2 < 1 . ) {

int ida = ( id1 == 0) ? 21 : id1 ;

int idb = ( id2 == 0) ? 21 : id2 ;

beam . c l e a r ( ) ;

beam . append ( 0 , ida , x1 ) ;

beam . xfISR ( 0 , ida , x1 , Q12 ) ;

i f ( ida == 1 | | ida == 2) beam . pickValSeaComp ( ) ;

r e s = beam . xfMPI ( idb , x2 , Q22 ) ;

}
return r e s ;}
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Appendix I

Stability checks
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PS + Les-Houches with a cut on pT [20, 200] GeV dR = 0.4
PS + Les-Houches with a cut on pT [20, 250] GeV dR = 0.4

Figure I.1: Test of stability of the leading jet ∆Y distributions under the variation of pmax
⊥ cut. Four-

jet DPS simulation performed for the collision energy
√
S = 13TeV with naive dPDFs constructed

out of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal to Q1 = p1⊥,
Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first
and second hard processes in a given DPS event. Statistical errors are given by

√
Nbin where Nbin

is a number of events in a given bin. Here we plot ∆Y distributions of the jets with p⊥ ∈ [35, 100]
GeV produced by adding ISR and FSR effects to the parton level DPS simulations performed with
pmax
⊥ = 150 GeV, pmax

⊥ = 200 GeV and pmax
⊥ = 250 GeV.
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Figure I.2: Test of stability of the DPS distributions under the variation of pmax
⊥ cut. Four-jet

DPS simulation performed for the collision energy
√
S = 13TeV with naive dPDFs constructed out

of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal to Q1 = p1⊥,
Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first
and second hard processes in a given DPS event. Statistical errors are given by

√
Nbin where Nbin

is a number of events in a given bin. Here we plot ∆Y distributions of the jets with p⊥ ∈ [35, 100]
GeV produced by adding ISR and FSR effects to the parton level DPS simulations performed with
pmax
⊥ = 150 GeV, pmax

⊥ = 200 GeV and pmax
⊥ = 250 GeV. Upper panel: distribution in terms of p⊥

momenta imbalance of two hardest jets ∆12. Lower panel: distribution in terms of difference in the
azimuthal angle of two hardest jets φ12.
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Figure I.3: Test of stability of the DPS distributions under the variation of pmax
⊥ cut. Four-jet

DPS simulation performed for the collision energy
√
S = 13TeV with naive dPDFs constructed out

of MSTW2008 LO PDFs [298]. Factorization and renormalization scales are equal to Q1 = p1⊥,
Q2 = p2⊥, where p1⊥ and p2⊥ are equal to the absolute value of a jet transverse momentum in a first
and second hard processes in a given DPS event. Statistical errors are given by

√
Nbin where Nbin

is a number of events in a given bin. Here we plot ∆Y distributions of the jets with p⊥ ∈ [35, 100]
GeV produced by adding ISR and FSR effects to the parton level DPS simulations performed with
pmax
⊥ = 150 GeV, pmax

⊥ = 200 GeV and pmax
⊥ = 250 GeV. Upper panel: distribution in terms of p⊥

momenta imbalance of two softest jets ∆34. Lower panel: distribution in terms of ∆S. For the
definition of ∆S, see Eq. 4.31



Appendix J

Methods to solve double DGLAP

evolution equations

Here we discuss different methods to solve DGLAP and double DGLAP evolution equations.

J.1 Method Chebyshev polynomial approximation

We start with the discussion of Chebyshev polynomial method1 which was applied to solve double

DGLAP evolution equations in [178] - [180]. We use a system of single DGLAP evolution equations

as an example. In the case of double DGLAP evolution equations one gets a similar system of

matrix equations of a higher rank, see [180].

The system of DGLAP evolution equations at LO can be written as

∂t qi (x, t) =
α (t)

2π

[∫ 1

x

dz

z
Pqq (z)

{
qi (x/z, t)− z2qi (x, t)

}
− qi (x, t)

∫ x

0
dzzPqq (z)

]
+

α (t)

2π

[∫ 1

x

dz

z
PqG (z)G (x/z, t)− qi (x, t)

∫ 1

0
dz PGq (z)

]
, (J.1)

∂tG (x, t) =
α (t)

2π

[∫ 1

x

dz

z
PGG (z)

{
G (x/z, t)− z2G (x, t)

}
−G (x, t)

∫ x

0
dzzPGG (z)

]
+

α (t)

2π

[∫ 1

x

dz

z
PGq (z) Σ (x/z, t)− 2Nf (t)G (x, t)

∫ 1

0
dz PqG (z)

]
, (J.2)

where Nf (t) is a number of flavours2 and

Σ (x, t) =

Nf∑
i=1

[qi (x, t) + q̄i (x, t)] , (J.3)

see [180].

It is convenient to write Eq. J.1 and Eq. J.2 in terms of PDFs multiplied by their arguments as

q̃i (x, t) = x qi (x, t) and G̃ (x, t) = xG (x, t) which allows to write the DGLAP evolution equations

1For the description of the Chebyshev polinomial method see, for example, [308].
2The way the number of flavours Nf depends on the evolution parameter t depends on a scheme chosen to solve

DGLAP evolution equations.
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as

2π

α (t)
∂t q̃i (x, t) =

∫ 1

x
dz Pqq (z) {q̃i (x/z, t)− z q̃i (x, t)} − q̃i (x, t)

∫ x

0
dz z Pqq (z)

+

∫ 1

x
dz PqG (z) G̃ (x/z, t)− q̃i (x, t)

∫ 1

0
dz PGq (z) , (J.4)

2π

α (t)
∂tG (x, t) =

∫ 1

x
dz PGG (z)

{
G̃ (x/z, t)− z G̃ (x, t)

}
− G̃ (x, t)

∫ x

0
dz z PGG (z)

+

∫ 1

x
dz PGq (z) Σ̃ (x/z, t)− 2Nf (t) G̃ (x, t)

∫ 1

0
dz PqG (z) , (J.5)

where integrals over the splitting functions may be computed analytically. In order to simplify

Eq. J.4 and Eq. J.5 we introduce the following integrals

Fq (x) =

x∫
0

dz z Pqq (z) +

1∫
0

dz z PGq (z) , (J.6)

F 1
g (x) =

x∫
0

dz z PGG (z) , (J.7)

F 2
g (t) = 2Nf (t)

1∫
0

dz z PqG (z) . (J.8)

Using Eq. J.6 - J.8 we can write the system of DGLAP evolution equations as

2π

α (t)
∂t q̃i (x, t) =

∫ 1

x
dz Pqq (z) {q̃i (x/z, t)− z q̃i (x, t)} − q̃i (x, t)Fq (x)

+

∫ 1

x
dz PqG (z) G̃ (x/z, t) , (J.9)

2π

α (t)
∂tG (x, t) =

∫ 1

x
dz PGG (z)

{
G̃ (x/z, t)− z G̃ (x, t)

}
− G̃ (x, t)F 1

g (x)

+

∫ 1

x
dz PGq (z) Σ̃ (x/z, t)− G̃ (x, t)F 2

g (t) . (J.10)

The decomposition into Chebyshev series will turn the system of DGLAP evolution equations into

a set of linear differential equations of the first order. For the function f(x) defined in the region

x ∈ [−1, 1] the decomposition into Chebyshev series reads

f (x) =
N∑
k=0

νk ck Tk (x) , (J.11)

ck =
2

N + 1

N∑
j=0

f (xj)Tk (xj) , (J.12)

xj = cos [(j + 1/2)π/ (N + 1)] . (J.13)

In order to expand the function defined in the range x̃ ∈ [a, b] we have to use decomposition in
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terms of “shifted” Chebyshev polynomials yielding

f (x̃) =
N∑
k=0

νk ck Tk
(
H−1 (x̃)

)
, (J.14)

ck =
2

N + 1

N∑
j=0

f (H (xj))Tk (xj) , (J.15)

H−1 (x̃) =
2x̃− (a+ b)

b− a = x, (J.16)

H (x) =
1

2
[(b− a)x+ (a+ b)] = x̃, (J.17)

where ν0 = 1/2, νk = 1 if l 6= 0. By applying Eq. J.14 - J.17 to Eq. J.9 - J.10 we get the following

system of matrix equations

∂t c
i
k (t) =

α (t)

2π
M̂kl c

i
l (t) +

α (t)

2π
Ĉ0
kl bl (t) , (J.18)

∂t bk (t) =
α (t)

2π
M̂0
kl bl (t) +

α (t)

2π

∑
i

Ĉkl c
i
l (t)− α (t)

2π
F 2
g (t) bk (t) , (J.19)

where the summation over all repeated indices is assumed, cik (t) is the k’th coefficient in Chebyshev

expansion of quark PDFs and bk (t) is the k’th coefficient in Chebyshev expansion of gluon PDF.

Equations J.18 and J.19 contain the following matrices:

M̂kl = Âkl + B̂kl, (J.20)

M̂0
kl = Â0

kl + B̂0
kl, (J.21)

Âkl =
2

N + 1
νl

N∑
j=0

1∫
x̃j

dz Pqq (z)
{
Tl
(
H−1 (x̃j/z)

)
Tk (xj)− z Tk (xj)Tl (xj)

}
, (J.22)

B̂kl = − 2

N + 1
νl

N∑
j=0

Fq (x̃j)Tk (xj)Tl (xj) , (J.23)

Â0
kl =

2

N + 1
νl

N∑
j=0

1∫
x̃j

dz PGG (z)
{
Tl
(
H−1 (x̃j/z)

)
Tk (xj)− z Tk (xj)Tl (xj)

}
, (J.24)

B̂0
kl = − 2

N + 1
νl

N∑
j=0

F 1
g (x̃j)Tk (xj)Tl (xj) , (J.25)

Ĉkl =
2

N + 1
νl

N∑
j=0

1∫
x̃j

dz PGq (z)
{
Tl
(
H−1 (x̃j/z)

)
Tk (xj)

}
, (J.26)

Ĉ0
kl =

2

N + 1
νl

N∑
j=0

1∫
x̃j

dz PqG (z)
{
Tl
(
H−1 (x̃j/z)

)
Tk (xj)

}
. (J.27)

As we have discussed in Chapter 1.5 PDFs rapidly grow at small values of x and rapidly decrease at

high values of x, see Fig. 1.15. It means that in order to get a good precision in the decomposition

of PDFs into Chebyshev series one may need to include to many terms. However, this problem can
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be solved by switching from the linear to the logarithmic scale which implies the following change

of variables

x → exp (x) , (J.28)

z → exp (z) . (J.29)

Our results of numerical solution of the single DGLAP evolution equations are given in Fig. J.1

where we compare the MSTW2008 LO PDFs evolved from Q2 = 30 GeV2 up to Q2 = 104 GeV2.

The ratios in Fig. J.1 are given by the ratios of the MSTW2008 PDFs provided with the LHAPDF6

library and the output of our evolution code. Since the MSTW2008 set contains u, d, s, c and b

quarks, for the testing purposes, we have set the staring evolution scale to Q2 = 30 GeV2. The

choice of the staring evolution scale above the mass of the b quark allows to set the number of

flavour to the constant which simplifies the checks of the evolution algorithm we use.

In Fig. J.2 we show a check of our implementation of the method of Chebyshev polynomials to

solve the system of double DGLAP evolution equations as it was proposed in [178] - [180]. In order

to test our implementation we use the GS09 set of dPDFs [173] as initial conditions at Q2 = 1 GeV2.

In order to check the error propagation in our code we use the GS09 dPDFs to decouple the system

of double DGLAP evolution equations. Namely, during the solution of the system of the double

DGLAP evolution equations we take all dPDFs from the GS09 set apart from the Duu dPDF.

Effectively it reduces a system of double DGLAP evolution equations to a single evolution equation

for the Duu dPDF. After performing the evolution for Duu we compare it against Duu from the

GS09 set. The result of this comparison is given in the lower panel of Fig. J.2.

J.2 Combination of the Runge-Kutta and Newton-Cotes methods

Another commonly used approach to solve the system of DGLAP evolution equations is based upon

combination of Runge-Kutta and Newton-Cotes methods3. This approach was used by Gaunt and

Stirling in [173] to produce GS09 set of dPDFs.

Here we describe the way we use Runge-Kutta and Newton-Cotes methods to solve a system of

double DGLAP evolution equations. First of all let’s write the system of double DGLAP equations

as in [180]

2π

α(t)
∂tDf1f2 (x1, x2, t) =

∑
f ′

{∫ 1

x1
1−x2

dz

z
P 0
f1f ′ (z) Df ′f2 (x1/z, x2, t)−Df1f2 (x1, x2, t)

∫ 1

0
dzzP 0

f ′f1

}
+

∑
f ′

{∫ 1

x2
1−x1

dz

z
P 0
f2f ′ (z) Df1f ′ (x1, x2/z, t)−Df1f2 (x1, x2, t)

∫ 1

0
dzzP 0

f ′f2

}
+

∑
f ′

1

x1 + x2
Pf ′→f1f2

(
x1

x1 + x2

)
ff ′ (x1 + x2, t) . (J.30)

Now let us write these these equations for different dPDFs. We start with Dqiqi (x1, x2, t) which

3For the description of the Runge-Kutta and Newton-Cotes methods see, for example, [308].
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Figure J.1: Our solution of the single DGLAP evolution equations. Upper panel: light flavour PDF
are evolved from 30 GeV2 to 104 GeV2 250 terms in Chebyshev expansion, 2000 evolution steps.
Lower panel: heavy flavour and gluon PDF are evolved from 30 GeV2 to 104 GeV2 250 terms in
Chebyshev expansion, 2000 evolution steps.

can be written as

2π

α(t)
∂tDqiqi (x1, x2, t) =∫ 1

x1
1−x2

dz

z
Pqq (z)

{
Dqiqi (x1/z, x2, t)− z2Dqiqi (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz

z
PqG (z) DGqi (x1/z, x2, t)−Dqiqi (x1, x2, t)


∫ x1

1−x2

0

dz z Pqq (z) +

1∫
0

dz z PGq (z)


+

∫ 1

x2
1−x1

dz

z
Pqq (z)

{
Dqiqi (x1, x2/z, t)− z2Dqiqi (x1, x2, t)

}
+

∫ 1

x2
1−x1

dz

z
PqG (z) DqiG (x1, x2/z, t)−Dqiqi (x1, x2, t)


∫ x2

1−x1

0

dz z Pqq (z) +

1∫
0

dz z PGq (z)

 .
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Figure J.2: Test of the evolution of the Duu dPDF. Upper panel: test of the decomposition of the
Duu dPDF into Chebyshev series at Q2 = 1 GeV2. Lower panel: comparison between Duu dPDF
evolved with our evolution code against GS09 Duu dPDF at Q2 = 104 GeV2.

The evolution equation for Dqiqi (x1, x2, t) can be written in a more compact form by introducing

the integral over DGLAP splitting functions Fqq (x1, x2) defined as

Fqq (x1, x2) =


∫ x1

1−x2

0
dz z Pqq (z) +

1∫
0

dz z PGq (z)

 . (J.31)
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Using Eq. J.31 we can write the evolution equation for Dqiqi (x1, x2, t) as

2π

α(t)
∂tDqiqi (x1, x2, t) =∫ 1

x1
1−x2

dz

z
Pqq (z)

{
Dqiqi (x1/z, x2, t)− z2Dqiqi (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz

z
PqG (z) DGqi (x1/z, x2, t) +

∫ 1

x2
1−x1

dz

z
PqG (z) DqiG (x1, x2/z, t) +

∫ 1

x2
1−x1

dz

z
Pqq (z)

{
Dqiqi (x1, x2/z, t)− z2Dqiqi (x1, x2, t)

}
−

Dqiqi (x1, x2, t) {Fqq (x1, x2) + Fqq (x2, x1)} . (J.32)

In a similar way we can write down the evolution equations for other dPDFs. The equation for

DqiG reads

2π

α(t)
∂tDqiG (x1, x2, t) =∫ 1

x1
1−x2

dz

z
Pqq (z)

{
DqiG (x1/z, x2, t)− z2DqiG (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz

z
PqG (z) DGG (x1/z, x2, t) +

∫ 1

x2
1−x1

dz

z
PGq (z) Σij (x1, x2/z, t) +

∫ 1

x2
1−x1

dz

z
PGG (z)

{
DqiG (x1, x2/z, t)− z2DqiG (x1, x2, t)

}
−

DqiG (x1, x2, t)
{
F aqG (x1, x2) + F bqG (x1, x2, t)

}
+

1

x1 + x2
Pqi→giG

(
x1

x1 + x2

)
fqi (x1 + x2, t) , (J.33)

where we have defined

F aqG (x1, x2) =

∫ x1
1−x2

0
dz z Pqq (z) +

1∫
0

dz zPGq (z) , (J.34)

F bqG (x1, x2, t) =

∫ x2
1−x1

0
dz z PGG (z) + 2Nf (t)

1∫
0

dz zPqG (z) , (J.35)

Σij (x1, x2/z, t) =
∑
j

Dqiqj (x1, x2/z, t) , (J.36)

and the sum in Eq. J.36 runs over all quark and antiquark species.
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The evolution equation for DGG reads

2π

α(t)
∂tDGG (x1, x2, t) =∫ 1

x1
1−x2

dz

z
PGG (z)

{
DGG (x1/z, x2, t)− z2DGG (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz

z
PGq (z)

∑
j

DqjG (x1/z, x2, t) +

∫ 1

x2
1−x1

dz

z
PGq (z)

∑
j

DGqj (x1, x2/z, t) +

∫ 1

x2
1−x1

dz

z
PGG (z)

{
DGG (x1, x2/z, t)− z2DGG (x1, x2, t)

}
−

DGG (x1, x2, t) {FGG (x1, x2, t) + FGG (x2, x1, t)}+

1

x1 + x2
PG→GG

(
x1

x1 + x2

)
fG (x1 + x2, t) , (J.37)

where

FGG (x1, x2, t) =

∫ x1
1−x2

0
dz z PGG (z) + 2Nf (t)

1∫
0

dz zPqG (z) , (J.38)

and the index j in Eq. J.37 runs over all quark and antiquark species.

Finally, the evolution equation for Dqiqj reads

2π

α(t)
∂tDqiqj (x1, x2, t) =∫ 1

x1
1−x2

dz

z
Pqq (z)

{
Dqiqj (x1/z, x2, t)− z2Dqiqj (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz

z
PqG (z) DGqj (x1/z, x2, t) +

∫ 1

x2
1−x1

dz

z
PqG (z) DqiG (x1, x2/z, t) +

∫ 1

x2
1−x1

dz

z
Pqq (z)

{
Dqiqj (x1, x2/z, t)− z2Dqiqj (x1, x2, t)

}
−

Dqiqj (x1, x2, t) {Fqq (x1, x2) + Fqq (x2, x1)}+

1

x1 + x2
PG→qq̄

(
x1

x1 + x2

)
fG (x1 + x2, t) , (J.39)

where

Fqq (x1, x2, t) =

∫ x1
1−x2

0
dz z Pqq (z) + 2Nf (t)

1∫
0

dz zPGq (z) , (J.40)

and the splitting term is non-zero only for the Dqq̄ distribution functions. One can see that equation

for Dqiqi emerge from the equation for Dqiqj by setting i = j. Equations J.33, J.37 and J.40 form a

closed system of integro-differential equations which describes the evolutions of dPDF4.

Before solving the system of double DGLAP evolution equations we write them in a form

4Equations for DqiG and DGqi dPDFs are not independent and related through the symmetry of dPDFs under the
interchange of the partons DqiG(x1, x2, t) = DGqi(x2, x1, t)
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suitable for numerical solution. Consider, for example, Dqiqi . In the same way as in Appendix J.1

we introduce D̃qiqi = x1x2Dqiqi which gives the following evolution for D̃qiqi

2π

α(t)
∂tD̃qiqi (x1, x2, t) =∫ 1

x1
1−x2

dz Pqq (z)
{
D̃qiqi (x1/z, x2, t)− zD̃qiqi (x1, x2, t)

}
+

∫ 1

x1
1−x2

dz PqG (z) D̃Gqi (x1/z, x2, t) +

∫ 1

x2
1−x1

dz PqG (z) D̃qiG (x1, x2/z, t) +

∫ 1

x2
1−x1

dz Pqq (z)
{
D̃qiqi (x1, x2/z, t)− zD̃qiqi (x1, x2, t)

}
−

D̃qiqi (x1, x2, t) {Fqq (x1, x2) + Fqq (x2, x1)} . (J.41)

Now we relabel variables as x1 = x, x2 = y

2π

α(t)
∂tD̃qiqi (x, y, t) =∫ 1

x
1−y

dz Pqq (z)
{
D̃qiqi (x/z, y, t)− zD̃qiqi (x, y, t)

}
+∫ 1

x
1−y

dz PqG (z) D̃Gqi (x/z, y, t) +

∫ 1

y
1−x

dz PqG (z) D̃qiG (x, y/z, t) +∫ 1

y
1−x

dz Pqq (z)
{
D̃qiqi (x, y/z, t)− zD̃qiqi (x, y, t)

}
−

D̃qiqi (x, y, t) {Fqq (x, y) + Fqq (y, x)} , (J.42)

and switch to the logarithmic scale

x = exp (x̃) ,

y = exp (ỹ) ,

z = exp (z̃) ,

which yields

2π

α(t)
∂tD

∗
qiqi (x̃, ỹ, t) =∫ 0

x̃−log(1−exp(ỹ))
dz̃ Pqq (exp (z̃))

{
D∗qiqi (x̃− z̃, ỹ, t)− exp (z̃)D∗qiqi (x̃, ỹ, t)

}
+∫ 0

x̃−log(1−exp(ỹ))
dz PqG (exp (z̃)) D∗Gqi (x̃− z̃, ỹ, t) ,+∫ 0

ỹ−log(1−exp(x̃))
dz PqG (exp (z̃)) D∗qiG (x̃, ỹ − z̃, t) +∫ 0

ỹ−log(1−exp(x̃))
dz Pqq (exp (z̃))

{
D∗qiqi (x̃, ỹ − z̃, t)− exp (z̃)D∗qiqi (x̃, ỹ, t)

}
−

D∗qiqi (x̃, ỹ, t) {Fqq (exp (x̃) , exp (ỹ)) + Fqq (exp (ỹ) , exp (x̃))} . (J.43)
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Expression for the others dPDFs can be easily obtained in the same way.

The test of our numerical code to solve double DGLAP evolution equations is given in Fig. J.3.

In our implementation we use the two step Runge-Kutta method for the evolution in t and the

seven-point Newton-Cotes rule for the numerical integration as it is described in [308]. We also

use cubic spline interpolation routines from the GSL library [294] to interpolate dPDFs between

different grid points. In order to check our code we take the DGG dPDFs from the GS09 set and

evolve it from the c quark mass up to the b quark mass. In the same was as in Appendix J.1 we

use GS09 dPDFs to decouple the evolution of DGG from the others dPDFs. After performing the

evolution of DGG we compare the output of our code against DGG dPDF from the GS09 set.

0

50

100

150

200

250

300

350

x 1
 x

2 d
PD

F Test of our evolution code
GG dPDF is evolved from Q2 = 1.96 GeV2

up to Q2 = 22.56GeV2

x2 = 0.001  100 steps in x 100 steps in t

GG dPDF from GS09 set
GG dPDF evolved with our code

10 3 10 2 10 1 100

x1

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

Ra
tio

Ratio: GG dPDF from GS09 set / GG dPDF evolved with our code

Figure J.3: Test of the evolution of the DGG dPDF. Here we evolve DGG dPDF given by GS09 set.
The initial evolution scale is set to the c quark mass (1.40 GeV) and the final evolution scale is set
to the b quark mass (4.75 GeV). We have used 100× 100 grid in x-space and performed 100 steps
in the evolution parameter t. In the lower panel we give the ratio between the DGG evolved to the b
quark mass against DGG from GS09 set.

J.3 Conclusions

In Appendix J.1 and Appendix J.2 we have briefly described the method of Chebyshev polynomials

and the combination of Runge-Kutta and Newton-Cotes methods which were used in [178] - [180]

and in [173] to solve the system of double DGLAP evolution equations. We also presented the

checks of our implementation of these methods shown in Fig. J.1 - J.3. However, the checks we have

performed demonstrate that PDFs and dPDFs evolved with our code deviate from the MSTW2008

PDFs and GS09 dPDFs at small and high values of x. Therefore, we leave the improvement of our

evolution code for the future work.
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