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1. Introduction

“[..] the grand underlying principles have been firmly
established. [..] further truths of physics are to be

looked for in the sixth place of decimals.”

(Albert A. Michelson in 1894 [Fla92])

The Standard Model of particle physics (SM) provides a very accurate description of
high-energy processes at the smallest scales and its predictions have been tested time
and again in a multitude of large-scale experiments. At particle accelerators like
the Large Hadron Collider (LHC), massive amounts of data have been generated and
yet, no clear deviation from the Standard Model has been found. Indeed, with the
discovery of the Higgs boso in 2012, another long-predicted part of its theoretical
framework was confirmed. However, being not so complacent (or cynical, depending
on one’s outlook) as Michelson in 1894, it is clear today that the established models
and theories must be incomplete. In fact, a large goal of the LHC and the research
around it is to discover “new physics” not yet explained by standard theories — for
some, this even goes as far as showing hints of disappointment when the discovered
Higgs boson did exhibit some of those properties which were predicted by theory.
With the LHC’s second round of operation in early 2015 with a collision energy of
\/E = 13 TeV (to be increased to 14 TeV in the near future), it will continue its mission
to uncover “physics beyond the Standard Model” at high energy scales.

The subject of this thesis is part of this great unknown potentially dwelling in the
regions that will be probed by the LHC. For as much as an achievement the Standard
Model is, it is unable to provide explanations for some important phenomena. Setting
aside that it (and the whole of quantum physics) does not account for gravity, one of
the four fundamental forces, it does not, for example, provide a viable candidate for
dark matter, which seems to make up a much larger portion of the matter content
of the universe than the known “ordinary” matter. Supersymmetry (SUSY) provides
a natural extension of the Standard Model by adding an additional boson-fermion

lor at least a “Higgs-like particle”
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symmetry. In the Minimal Supersymmetric Standard Model (MSSM), every known
elementary particle gains a supersymmetric “twin” or superpartner with identical
properties except for spin (differing by '/2) and mass (due to symmetry breaking);
thus, for Standard Model bosons, these partners are fermions, while for fermions,
the superpartners are bosons [Mar11, ch. 1]. If some version of supersymmetry
were confirmed to be physical reality, it would provide a plausible dark matter
candidate in the form of the lightest supersymmetric particle (LSP). SUSY can also
more easily be combined with General Relativity to form a theory of supergravity
(SUGRA). More indications are provided by the so-called “weak-scale instability
problem” or “hierarchy problem”, to which SUSY is one possible solution — but
only if the masses of SUSY particles are approximately degenerate and not much
larger than the TeV scale —, the lack of gauge coupling unification in the Standard
Model (which can be achieved in the MSSM) and the more natural explanation of
electroweak symmetry breaking which is possible with SUSY [Ait05, section 1]. Due
to the lack of evidence for supersymmetry in the first run of the LHC (2010-2013,
\/g = 7TeV and 8 TeV), some have even raised concerns about a “crisis” in physics,
as discarding supersymmetry would leave many of the questions mentioned above
unanswered without a clear theoretical candidate to resolve them.

This work scrutinizes a specific supersymmetric process predicted to be very rele-
vant to hadron colliders like the LHC. The total cross sections for the pair-production
of the lightest supersymmetric top quarks (stop quarks, ;) in proton-proton col-
lider experiments are calculated numerically. The MSSM, even more so than the
Standard Model, suffers from a large number of parameters (exceeding 100 [Hab98])
unable to be derived from the theory. Exacerbating the problem, the Standard Model
parameters can be obtained by experimentation, while it is not yet clear if super-
symmetry is a description of physical reality at all. As such, calculation of the cross
sections is only possible using assumed values for the parameters (such as the light
stop mass 1y, ).

To obtain useful predictions for experimental data, however, it is necessary to have
some information about how different values for the relevant parameters can affect
the resulting cross section. Thus, the variation of the cross section of stop quark
pair-production with its parameters is examined in leading order (LO) and next-to-
leading order (NLO). The masses of the “lighter” squark flavors (other than stop) are
assumed to be degenerate. For the given process, this results in a parameter space
of five unknown parameters, namely the stop masses m; and m;,, the degenerate

squark mass 1, the gluino mass m; and the mixing angle, usually given as sin(26;).
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Scanning the parameter space, the effect of varying parameters on the cross section
is studied and intervals of the values taken by the cross section as the parameters
are varied are provided. Using this information, the maximum error on the cross
section made by assuming certain values for the parameters can be estimated.

In chapter 2, basic elements of the current scientific understanding of particle
physics due to the Standard Model are outlined. Supersymmetry is presented as a
possible theoretical extension of this already-accepted knowledge and motivation is
provided to illustrate why it is proposed as a strong candidate for physics beyond the
Standard Model. Moreover, Feynman diagrams are introduced as the standard way
to calculate cross sections in scattering experiments. Continuing to chapter 3, the
method of Feynman diagrams is applied to the specific process considered in this
work: the production of stop-antistop pairs at hadron colliders. For this, scattering
of individual quarks and gluons has to be considered first before proceeding to
hadronic scattering. In chapter |4, the numerical results obtained by the computer
code developed for this work and by the established program Prospino [BHS96] are
presented. Finally, the results are discussed and summarized in chapter|5, Refer to
appendix|A for remarks on conventions and notation.



2. Elements of quantum field theories,
the Standard Model and SUSY

In this chapter, some basic properties of the Standard Model and of SUSY are pre-
sented. Moreover, Feynman diagrams are introduced as a method to calculate cross
sections of scattering processes and their derivation from quantum field theory is
sketched. The Feynman rules necessary for the calculations of cross sections are given
in section

2.1. The Standard Model of particle physics

As mentioned above, the Standard Model of particle physics provides an accurate
description of three of the fundamental interactions (electromagnetic, strong and
weak) and has been thoroughly tested up to the TeV scale. The fundamental particles
of the Standard Model and their interactions are illustrated in fig. The Standard
Model fermions are divided into two groups called quarks and leptons, where quarks
take part in the strong interaction while leptons do not. Composite particles made
up from three (valence) quarks are called baryons, while those consisting of a quark-
antiquark pair are referred to as mesons. All SM fermions and the weak gauge
bosons take part in the weak interaction and all charged particles participate in the
electromagnetic interaction. The four spin-1 gauge bosons mediate the forces between
the different particles. The scalar Higgs boson stems from the Higgs mechanism
which is responsible for endowing the particles with mass.

The strong interaction is very important for processes at the nuclear and sub-
nuclear scale. It is described theoretically by quantum chromodynamics (QCD). As
shown in fig. quarks and gluons are the particles which participate in the strong
interaction and so are part of QCD. As its name suggests, the strong interaction is
the strongest of the fundamental interactions, but it is only effective at very small
length (or very high energy) scales. In fact, it is so strong that quarks or gluons can
never directly be observed individually as free particles and only be studied through
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Figure 2.1.: An overview of the particles and interactions (mediated by the gauge bosons) of
the Standard Model.
Source: https://commons.wikimedia.org/wiki/File:Standard Model of _
Elementary_Particles_modified_version.svg (retrieved 2015-09-17).

their interactions and decay products. This is because, as opposed to the other
fundamental interactions, the strong interaction actually increases in strength with
greater distances Moreover, unlike in electromagnetism, the gauge boson mediating
the strong interaction — the gluon — is itself affected by the strong interaction. If one
were to attempt to separate the quarks of a hadron like the proton, the energy required
would be so large that massive particle-antiparticle pairs would be created, forming
new hadrons and mesons instead of providing unbound elementary quarks. In other
words, the binding energy due to the strong interaction is larger than the energy
required for pair-production. This phenomenon is called confinement. The nuclear
force which binds atomic nuclei (consisting of protons and neutrons, which are
hadrons) together is in fact an effective remnant of the strong force not dissimilar to
the van der Waals force in molecules.

In QCD, each quarks carries one of three different kinds of so-called color charges
(hence the name), while antiquarks carry negative (or anti-)color. Gluons have both
color and anti-color and can transfer color charge between particles. The coupling
constant describing the strength of the interaction is denoted by &, for the strong

1Up to a certain point.
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coupling. However, this “constant”, often called running coupling, actually depends
on the energy scale at which a process takes place. While the coupling strength
increases with larger energy scales for theories such as quantum electrodynamics
(QED), a4 is found to diminish with higher energies. Because of this phenomenon
called asymptotic freedom, quarks in high-energy collider experiments can be treated
as asymptotically free particles, which will be exploited in chapter|3| Details on QCD
can be found in many standard works, e. g. [Kan93; HM8&4].

Mathematically, the Standard Model is described using a gauge group for each
known interaction. The full Standard Model gauge group is SU(3)xSU(2); xU(1)y.
The different parts of that expression correspond to the strong interaction with
its three color charges, treated as the gauge group SU(3)¢, and the electroweak
interaction (which is the unification of the weak and electromagnetic interactions at
the electroweak energy scale) group SU(2); x U(1)y [Mar11, ch. 1].

2.2. Supersymmetry and the Minimal Supersymmetric
Standard Model

So far, no conclusive evidence of deviation from the Standard Model'’s predictions
has been found in particle physics experiments, even with data from the first run
of the LHC at \/g = 8 TeV. However, as alluded to before, questions like what dark
matter consists of or the problem of gauge coupling unification at very high energy
scales are reasons prompting one to consider SUSY as a step beyond the SM.

In SUSY, an additional symmetry is introduced to the Standard model relating
fermions and bosons. The Lagrangian describing a supersymmetric theory is invari-
ant (symmetric) with respect to transformations which can transform bosonic into
fermionic fields and vice-versa. This means that, on a fundamental level, fermions
and bosons are not treated differently by the laws and equations governing the theory.
A consequence is that each Standard Model particle gains at least one superpartner
whose spin differs by /2. Non-Standard Model supersymmetric particles are also
abbreviatedly called sparticles, with scalar (spin-0) sparticles being prefixed with
an s- (e. g. “stop quark”) and fermionic sparticles ending in -ino (e. g. “gluino”); in
formulae, they have the same symbols as SM particles but gain a tilde (e. g. a quark 4
or a gluino g).

A problem that arises with such an extension is that additional decay processes
become available. This would include the possibility of proton decay. This, however,
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has not been observed experimentally and, to the current state of knowledge, the
proton is stable. To address this, the conservation of a quantity called R-parity is
introduced. This multiplicative quantum number is defined as

Py := (—1)3(B-L)+2s (2.1)

with the baryon number B, lepton number L and spin s Standard Model particles
have even parity Pg = 1, while SUSY particles have odd parity P = —1. A conse-
quence is that SUSY particles can only be produced or annihilated in pairs. This
means that the lightest supersymmetric particle (LSP) is stable and thus a promising
candidate for dark matter [Brell, pp. 7-8].

In the most general case, this leads to an MSSM with 124 free parameters [Hab98],
of which 19 correspond to the Standard Model parameters. This very large parameter
space poses a significant problem for the study of SUSY, as concrete predictions can
of course only be made by eventually assigning values to some parameters. Different
models attempt to mitigate this issue. For example, the constrained MSSM (cMSSM)
— or minimal supergravity (mSUGRA) — only has five SUSY parameters, assuming
that (at the energy scale of “grand unification”, where the three interactions of the
Standard Model unify through equal gauge couplings) all SUSY scalar boson masses,
SUSY fermion masses and all trilinear couplings between the particles have equal
values mg, m:,, and Aj. The remaining parameters are the sign of the mass parameter
sgn(y) and tan(B), which pertain to the Higgs mechanism. The rest of the MSSM
parameters at different energy scales are obtained using these boundary conditions
in renormalization group equations [Brell, pp. 8-9]. However, most of the cMSSM
parameter space has already been exhausted experimentally.

To begin with, just like in the Standard Model SUSY would imply that sparticles
have equal masses to their Standard Model counterparts. However, since there
has been no clear experimental evidence of SUSY yet, this cannot be the case — the
sparticles, if they exist, must have larger masses than even the top quark. This means
that SUSY must be a spontaneously broken symmetry. Note that for the SUSY quarks
(squarks), there exist two distinct states (resulting in two “versions” of squarks with
potentially different masses), just like there are two spin states for every Standard
Model quark. The SUSY field squark eigenstates which take part in interactions

2(Anti-)quarks have baryon number B = 1% and (anti-)leptons have lepton number L = F1.
Swhere originally, all particle flavors are mass-degenerate due to the electroweak symmetry group
SU2),
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(called the “chiral eigenstates” and denoted with subscripts L and R for “left-handed”
and ”right-handed” are not the same as the mass eigenstates which determine the
particle masses. They are related through a phenomenon called mixing. This arises
because the relevant SUSY Lagrangian contains bilinear combinations not only of
the same states (e. g. 4, 4; ), but also “mixed” terms like 4} §. For example, for the
top squark, the situation can be written as

oCstop masses — AELEL + BERER + CERfL +D ELER

- = ra 2.2
=~ i () 22

with the squared “mass matrix”

M%:AC.
t \D B

As the mass matrix M; is not diagonal, the mass eigenstates differ from the states f;
and fi. The off-diagonal terms are proportional to the (large) top mass m,, which
is why the mixing is significant for stops so that they have to be treated separately
from the squarks of other flavors. Since the mixing effects are proportional to the
mass of the corresponding Standard Model quark, they can be neglected for the
lighter two quark families (1, d and ¢, s). Mixing between generations has also been
determined to be negligible [Brell, p. 9]. Through a change of basis in the form of
a rotation matrix, the mass matrix can be diagonalized and the mass eigenstates
obtained [Brell, p. 9; Bee+10, p. 3]:

f s(f;)  sin(6y) \ (f
~1 — CO' ( t) ( t) ~L (23)
ty —sin(6;) cos(0;) ) \fr
with the mass eigenstates f;, f, which are associated with the masses my , myg . This is
why the mixing angle 6; is introduced as an important parameter in the consideration

of stops. Conventionally, f; is the lower-mass state and is predicted to be the lightest
of all squarks.

4This terminology is somewhat misleading as chirality does not apply to the scalar squarks.
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Figure 2.2.: Summary of the dedicated ATLAS searches for top squark pair-production based
on 20 fb~! of pp-collision data taken at VS = 8 TeV [ATL15].

2.3. Experimental searches and exclusion limits

As mentioned in the first chapter, many high-energy physics experiments have a
goal of searching for evidence for supersymmetry. Among them are hadron collider
experiments, as at the LHC. As more experimental data becomes available for rising
energy scales, more and more versions of SUSY can be excluded if the observations
do not agree with their predictions. At higher collider energies, production of very
massive particles (including SUSY particles, if they exist) becomes increasingly likely,
allowing the formulation of lower bounds on the masses of the SUSY particles if the
predictions corresponding to those masses are not met in experiments.
Information and plots about the exclusion limits on SUSY parameters using current
LHC data can be obtained from the ATLAS and CMS collaborations. An example is
shown in fig. Specifying a global limit on a single parameter is difficult due to
the multitude of possible different decays and interactions, only some of which are
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suitable to probe SUSY parameters, and the wide variation in different models used
in evaluating the data (c(MSSM, MSSM with different assumptions...). The exclusion
limits are strongly model-dependent and a wide range of values is given for different
models. A detailed discussion of the experimental approaches cannot be given here;
tig.2.2shall only serve as motivation illustrating that the available parameter space
for stop masses m; less than about 700 GeV is strongly constrained. The other mass
parameters that will be studied in chapter |4 (the f,-mass, the remaining squark
masses 1m; and the gluino mass my) are even larger than the (light) stop mass and
thus have even stricter exclusion limits associated with them. A detailed summary
of the consequences of the first LHC run for SUSY can be found in [Cral4]. There,
generic mass limits of approximately m; > 650 GeV, m; > 800 GeV and m; > 1TeV

are quoted.

2.4. Feynman diagrams and Feynman rules

In this section, the basic steps to arrive at Feynman diagrams in the quantum field
theoretic formalism of canonical quantization are outlined. An alternative approach
to quantum field theory is the method of path integrals (“sum over histories”). This
portrayal is strongly based on [Das08], with a similar account given in [PS95, chap-
ter 4]; this is to be understood for the entire section, such that pieces of information
will not all be individually cited to [Das08; PS95]. A more intuitive approach to
Feynman diagrams is presented in [Sey05].

First, a word on relativistic quantum field theory (QFT): The transition to a field
theory and Lagrangians (instead of the Hamiltonian formalism of non-relativistic
quantum mechanics) lends itself more easily to a relativistic theory. It turns out
that relativistic quantum mechanics naturally lead to a many-particle theory. As
such, states in QFT are states in Fock space, with a vacuum state |0) representing the
state where no particles are present. Creation and annihilation operators 4 and a'
(which add or remove a particle) are introduced akin to those found for the energy
states of the quantum mechanic harmonic oscillator. In a process called “second
quantization”, the states themselves are represented using operators which act on the
vacuum state to produce a many-particle state: [¢) = ¢10). Thus, after the observables
were replaced by operators (“quantized”) in first quantization, now the physical
states are also represented using (field) operators. Note that even relativistic QFT
only incorporates special relativity, as a quantum theory of gravity is not established
yet, which is a large current problem of physics.
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2.4.1. Canonical quantization and the S matrix

In scattering experiments (which also comprise collider experiments), an initial set
of particles with known energies and momenta is made to interact to produce a
different set of particles with potentially different energies and momenta. Detailed
information about the exact interaction process cannot generally be predicted and in
any case is not available to the real-world observer, who can only detect the final set
of particles long after the interaction has taken place. Due to this nature of scattering
experiments, theoretical treatments consider asymptotic free-particle states long before
and after the interaction processes. The central quantity to be determined is the cross
section o, which is a measure of the probability of a certain set of processes to occur.
It is defined as the ratio of scattered particles corresponding to the given process
to the flux (number of particles per unit area) of incoming particles and thus has
the dimensions of [¢] = L? (an area), commonly given in units of b = 10728 m? (or
SI-prefixed versions thereof). For comparison, if a process has a cross section of
o, its probability or rate of occurrence is the same as that of an idealized classical
experiment where an incoming beam of point-like particles is directed at a target of
solid disks with area ¢.

In the canonical quantization formalism, the probability amplitude or scattering
amplitude (which is related to the cross section) is an element of the so-called S matrix.
Assuming that the incoming particles at t — —oo as well as the outgoing particles at
t — oo can be represented using free-particle states if the initial state is denoted

i) := [¢p;(—o0))

for some time-dependent state |;(t)), the time evolution to the point of observation
of the final state at t — oo from this state is given by the unitary time evolution
operator U(t, ty) as

[§i(00)) = U(—00,00) [th;(—00)) = S|i)

defining
S:=U(—oc0,0). (2.4)

In general, the time evolution operator is given (in the interaction picture) by the

°If necessary, this can be achieved by modifying the interaction Hamiltonian to “switch off adiabati-
cally” such that the interaction vanishes for t — too: H(t) — lim,_q e THH ().
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Dyson series

t
Ut ty) = TeXp(—iIHI(t’)dt') (2.5)
to

with the time ordering operator Tﬁ The S matrix is thus simply the operator evolving
the initial state to the final (scattered) state. Usually, the Dyson series cannot be
evaluated analytically. In this case, the S matrix can be approximated perturbatively
through the expansion

. 2 [ee)
S=1+ (—i) f Hy(t)dt + —— ( f f T Hy(H)Hy(t')dtdt + (2.6)

The probability amplitude that the scattered particle will be in the final free-particle
state |f) is the matrix element

S = (fISli) .

This demonstrates that knowledge of the S matrix enables one to obtain information
about the transition probabilities of the scattering process.

Going further in studying S matrices, Wick’s theorem is a very important tool. It is
useful to give the interaction Hamiltonian in normal-ordered form in quantum field
theory. Normal ordering of an operator is defined as the order in which annihilation
operators are applied before (stand to the right of) creation operators:

:aat: = ata. (2.7)

This is relevant because the field operators can be expanded in the basis of plane
wave solutions — for example, for scalar Klein-Gordon fields:

P(x) = f (e‘ik'xa(k)) + eik'xa*(l_é))d3k. (2.8)

1
V (271)32Kk0

A normal-ordered operator has useful properties, among them that the vacuum
expectation value (VEV) of a normal-ordered operator vanishes:

(0:A:]0) =0 (2.9)

®The action of the time ordering operator on a product of operators can be defined as T ¢ (x)p(y) :=
P(xX)Ppa)0(x° —y°) + p(y)Pp(x)0(y° — xV). Note that the order inside the time ordering matters
for fermionic fields.
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because the annihilation operators are on the very right and thus applied first,
resulting in zero since they are acting on the vacuum state. This has a tangible
physical interpretation, as the vacuum expectation value of any physical observable
would be expected to be zero — the vacuum state contains no particles, so that there are
no non-trivial properties to observe. With the Hamiltonian given in normal order, the
evaluation of S matrix elements involves the time-ordered form of normal-ordered
operators (recall (2.5)). Wick’s theorem provides a systematic way of evaluating
products of operators. One defines the contraction of two operators as

1
P)PY) == THx)P(Y) —:p(X)P(y):; (2.10)

since the vacuum expectation value of a normal-ordered product vanishes, the VEV
of the contraction can directly be identified with that of the time-ordered product.
With this, a form of Wick’s theorem states that’|

T [p(x)) = :p(x1)Px2)...p(x,,):
=1 1 s —
+ P(x1)P(x0) :p(x3)...p(x,,): + P(x1)P(X3) :p(Xp)...p(x,): + ... (2.11)
+ () P(0) P(x3)P(xy) 1 (X5)...h(X,): + ...

or, in words, that an arbitrary time-ordered product of field operators can be written
as a sum of terms with normal-ordered products on the right and all possible con-
tractions of the field operators to the left For the free Klein-Gordon field theory
(scalar particles, i. e. spin 0), it can be shown that

OIT p(x)p(y) 10) = p(x)P(y) = iGp(x — ) (2.12)

with the Feynman Green'’s function (or Feynman propagator) Gg(x — y). Similar results
are obtained for other theories such as Dirac fields (spin-'/2 particles). hints
at the relevance of both Wick’s theorem, which expresses time-ordered products
in terms of normal-ordered products and contractions, and the Feynman Green’s
function, which is related to contractions between field operators.

Green’s functions (also called propagators) are solutions to linear differential
equations where the inhomogeneity is a point-like source (é-distribution). For a

For bosonic field operators. Care must be taken with fermionic field operators, as each commutation
introduces a factor of —1 due to the anticommutation relations.

8 . . . .
Each combination of contractions ¢ (x;)¢(x;) must be present exactly once in the total sum.
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given linear inhomogeneous differential equation
L(¢p(x)) =J(x)
with a linear differential operator L, a solution G(x, y) to the equation
L(Gxy) = =*(x —y)
is a Green’s function for that equation. Due to the linearity of the differential operator,

o) = [ G yI@dly

is a solution to the equation. Thus, with the knowledge of the Green’s function,
solutions to the equation can be constructed by integrating the product of the Green’s
function and the inhomogeneityﬂ With wave equations such as the Klein-Gordon
equation or the Dirac equation of quantum field theory, there are generally several
possible Green’s functions. Two of them are the advanced and retarded Green’s
functions G (x — y) and Gg(x — y) which have support only in the past and future
light cones, respectively

2.4.2. The path to Feynman diagrams

To illustrate the use of Wick’s theorem, the example of a Yukawa interaction (inter-
action between a spin-1/> Dirac field and a charge-neutral scalar field, for example
protons and 77° mesong!") from [Das08, section 8.9] shall be sketched. The Lagrangian
densit used in this theory is

, _o1 M? .
L =igdp — mpy + 50,99"p — ——¢* — gPyp¢ (2.13)

with the four-gradient 0¥, @ = 79, (with the Dirac matrices 7*), a fermionic field
¢ with mass m, a bosonic field ¢ with mass M and a coupling constant g The

°If the equation has constant coefficients, G is a convolution operator G(x,y) = G(x — y).

0These Green'’s functions are already encountered in classical wave theories such as classical electro-
dynamics.

1The example is simplified and does not represent all properties of p-7t° interaction.

2The Lagrangian density is defined by the relation L = [.Ld3x with the “full” Lagrangian L; a
Hamiltonian density H is defined in the same manner.

3With the Lagrangian, the dynamical equations governing the theory can be obtained through the
Euler-Lagrange equations analogously to classical mechanics.
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Lagrangian is separated into free-particle and interaction terms:

- | M2,
L1 = =8Py = —g: Py = —Hy (2.15)

with the interaction Hamiltonian density H;. Now, using this concrete example, the
S matrix is given by the expansion of the Dyson series (2.6):

S = Texp(—i fHIdt) = Texp(—if}ﬁld4x)
=ﬂ—gﬁwmwmmwﬁ%
2
—-%? finﬂxx)¢mx)¢(xy:¢(xq4mxu¢meyd4xd4x’+.“.
This can can now be evaluated using Wick’s theorem (2.11):
s:n-gﬁ@mwmmma%
2
& [ [opmemdepengw:
1 _ _
PP PO POP(x)(x'):
— _ 1 _
+ Pa ()P (x") P, ()P (X") P(x) p(x"):
1 -
— P (X )P (x) P (), (X ) P(x) p(x"):
F PP Yo (X Pp(x) () (X):
— P PE) P () P (1) P (X P (¥):
— PP () Y5 () P () PO P(X):
~ PEOPC) P (I P () () |d*xdit

+ ...

Writing this in detail in terms of positive and negative energy operators, one obtains
a sum of terms each representing a distinct physical process. Different terms of the
full transition amplitude (f|S|i) can be obtained by evaluating matrix elements of the
different terms in the sum. For example, for the second term at second order (~ g?)
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in the expansion, a non-vanishing matrix element can be obtained if both the initial
and the final state contain a proton and an anti-proton pp — pp (with the possibility
of different momenta and spin states): [i) = |py,s1;p2,52) and |fy = |q1,57; G2, 55)-
Denoting the aforementioned term as Séz), evaluation of this matrix element yields

<ﬂS§2) i) = <f]1, 511; 42, S,2|S§2) ‘Plr S1,P2, 52>

m> - _ 2.16
~ 82—, (41,5104 (G2, 85)iGE (P1 + P2)Dp (P2, 52)Up (P1,51) - 216)

VPr9a943

This process can be physically interpreted to correspond to a pp pair annihilating

0 meson, which in turn pair-produces another pp pair. Gg(k) is the

to produce a 7
Fourier transform of the (scalar Feynman propagator Gg which, in this example
theory, has the form ‘

i
k2 — M2 +ie’
The transition amplitude depends on the coupling constant g to the order of
the perturbative expansion, the masses M? (through the propagator) and m? and

Gg(k) = lim (2.17)
-0

the observable momenta and spin states before and after the process through the
spinors of the incoming and outgoing particles.

Now, although Wick’s theorem is very helpful in evaluating the perturbative
expansion of S matrix elements, it is somewhat cumbersome to work with directly.
Finally, this is where Feynman diagrams come in: They provide a graphical notation
for the different terms in the Wick expansion. Incoming and outgoing particles
corresponding to the initial and final states are represented as external lines (one
for each particle) entering a graph. The propagators are represented as internal
particle lines, as they are completely independent of the initial and final states.
Lastly, the third element of Feynman diagrams are vertices. These represent the
interaction itself and stem from the interaction Lagrangian ;. Given these three
categories of elements, the transition amplitudes can be found by drawing all possible
Feynman diagrams corresponding to terms of a desired order in the perturbative
expansion. The calculation of each diagram is then done by simply including different
factors in the term which directly correspond to the different elements (external lines,
propagators and vertices) in the diagram. The prescriptions describing which element

4The fermions have a different Feynman propagator associated with them which appears in terms
where intermediate (virtual) fermions are generated (those which contain the contraction of
fermionic field operators).



2. Elements of quantum field theories, the Standard Model and SUSY |19

corresponds to which mathematical expression are known as the Feynman rules of
the theory (see also section2.5).

To summarize, Feynman diagrams are a systematic way to perturbatively evaluate
scattering matrix elements and thus transition probabilities for scattering experi-
ments. Different terms that come about in the perturbative expansion of the S matrix
correspond to the vertices and propagators that are compiled in the Feynman rules
of a theory, with higher orders in perturbation corresponding to more complex
diagrams (with higher numbers of vertices).

2.5. SUSY-QCD Feynman rules

The Feynman rules for ordinary Standard Model QCD are given in [AH13, ap-
pendix Q; PS95, appendix A.1; DGR04, pp. 88-89]; the additional rules for SUSY-QCD
can be found in [DGR04; Bee+97, p. 50] They are usually given in momentum space,
simplifying calculations. For external (incoming or outgoing) lines, the following
rules apply:

* For each fermion or anti-fermion entering the graph with four-momentum p
and spin state s, the spinor

u(p,s) or o(p,s), (2.18)

respectively, is to be included as a factor to the scattering amplitude.

* For each fermion or anti-fermion leaving the graph with four-momentum p’
and spin state s’, the spinor

ulp',s")y or ovp,s), (2.19)

respectively, is to be included as a factor to the scattering amplitude.

* For each gluon entering or leaving the graph with momentum k, the polariza-

tion vector
e(k,A) or e&*(k,A), (2.20)

respectively, is to be included as a factor to the scattering amplitude.

15The notation in different sources is not always consistent, which has been accounted for.
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In Standard Model QCD, two types of propagators exist: A quark and a gluon
propagator. For these, the following factors are to be included:

i . pt+m
> = p—m = ZPZ — 2 (2.21)
' k¥kY
Q000000000000 = k%(—g”” td-07 )5”” 222)

with the quark mass and momentum p and m, the gluon momentum k, a gauge ¢
(which can be chosen to be 1 - this will be done in calculations), p = 7¥p,, and the
Dirac matrices y¥. Finally, three kinds of vertices are possible:

q

poa = —ig Ty (2.23)

ks, ¢ = —gtbc [gw(’ﬁ —ko)a + &ualky —k3)y + gy ks — kl)v]

k1,ﬂ (kl +k2+k3:O)
(2.24)

and a four-gluon vertex ~ g2, where T% = %/\“ with the Gell-Mann matrices A* and
(T9)be = —if”bc with the SU(3) structure constants f abe

For SUSY-QCD, propagators for squarks and gluinos as well as a number of vertices
are added to the existing ones. The squark propagator is simply that for a free
scalar particle, cf. . The following of these will be relevant for leading-order
calculations of ff-production:

______ ———— e = T (2.25)

q

p2 \‘\\ 8 : a u

) //\smszm Hot = —igsT"(py = p2) (2.26)
1
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g v, b
= ig2{T", Tt} g (2.27)
q wa

with squark momenta p, p; and p, and the squark mass m.



3. Stop quark pair-production

As the name suggests, hadron colliders like the LHC operate by accelerating hadrons
up to great energies (TeV-scale) and directing these beams of accelerated hadrons into
each other. These collisions are analyzed by large detectors at specific points around
the accelerator. Due to the high-energy collisions of many particles, a multitude of
physical interaction processes occurs, potentially producing unstable, high-mass
intermediate particles which decay through different channels into more stable
products. It is these final products which are analyzed using different types of
detectors designed for different collision products (charged, uncharged, low-mass,
high-mass...). Together with very sophisticated data processing, the types, amounts,
energies and trajectories of the resultant particles are used to reason about the
interactions that take place during the collisions.

Since free quarks cannot be experimented on or directly observed due to confine-
ment, proton-proton (pp collisions are studied instead. The LHC operates as such
a pp-collider. As protons are not elementary particles, it is not sufficient to merely
determine the cross section of a direct interaction between quarks or gluons (partons)
to produce SUSY particles — one has to consider the elementary particle content of the
protons to proceed from the cross sections for “direct” QCD interactions (partonic
cross sections) to the full hadronic cross sections. These can then be compared with
experimental results.

Here, only (SUSY-)QCD contributions are considered for the calculations. While
QED processes will of course be present as well, their contributions are negligible
for these purposes in the context of a hadron collider such as the LHC. At the TeV
energy scale, the electromagnetic coupling constant « is much smaller than the QCD
coupling &g > a. Moreover, top quarks are excluded from the initial state throughout
the analysis. Due to its large mass (m; = (173.34 + 0.76) GeV [ATL14]), the top quark
is extremely unlikely to be present in the initial state at all so that its contribution to
the colliding protons (the parton distribution function) is practically zero [MSTWO08].
On the other hand, the lighter quark masses (all masses other than ;) will be taken

lor proton-antiproton (pp)
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to be m,; ~ 0. This can be justified because the masses of the light quarks (on the
order of a few MeV to GeV) are dwarfed by the masses of the SUSY particles, which
must be at least in the TeV range due to experimental exclusion limits (see section|2.3).

3.1. Stop quark production at leading order

In this section, two-to-two particle interactions will be studied. In general, the
momenta of the incoming (initial-state) particles will be labeled p, and p,, while
those of the outgoing (final-state) particles will be labeled g, and q,. When evaluating
Feynman diagrams, the so-called Mandelstam variables

5:= (1 +p2)? = (91 + )
ti= (p1—4q0)% = (2 — 72)° (3.1)
u:=(p1— 4% = (pa — 11)°

are usually introduced. Vs is the center-of-mass energy of the incoming particles,

while t and u are related to the momentum transfer in scattering processes where
the interaction is mediated by particle exchange Additionally, the shorthands

ty :=t —m?2
9 (3.2)
Uy =u— m%

=~ will be useful. The Mandelstam variables are related

with the squark mass m;

through
s+t+u=pi+p;+q]+q5=2m;, (3.3)

due to four-momentum conservation |
For squark pair-production in general, one has to consider all Feynman diagrams

which are proportional to the coupling strength g = % (i.e. in first order), con-
sistent with the Feynman rules of (SUSY-)QCD and which result in a squark and a
corresponding antiparticle as output products. The two processes exhibiting squark
pair-production at leading order are gg-annihilation and gg-fusion.

2Cf. the second and third diagram in fig.

3The second equality follows because all possible initial-state particles (light quarks and gluons) are
taken to have vanishing mass (p7 = p5 = 0) and 7 = g5 = m because only final-state §g-pairs
are considered here.
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(a) Diagrams for gg-annihilation. In the first diagram, color (i, j, I, m) and spinor (s, s") indices
as well as four-momenta are explicitly labeled. Note that the diagram in parentheses does

not contribute to stop-production.
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(b) Diagrams for gg-fusion.

Figure 3.1.: Feynman diagrams for supersymmetric quark pair-production at leading order.

Cf. also [Bee+97, p. 6].
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3.1.1. Production processes and matrix elements

The Feynman diagrams contributing to j4-production at leading order are shown
in fig. As mentioned before, initial-state top quarks are excluded. Due to this,
the second Feynman diagram (parenthesized) in fig. does not contribute to the
calculations. This is because the strong interaction conserves flavor and thus, if top
squarks are to be produced at the vertices in the diagram, the incoming particles
must be a top-antitop pair as well. The second and third diagram in fig. are
identical except for the exchange of the outgoing (or, equivalently, incoming) particles.
The reason that this is a separate Feynman diagram is that the two gluons in the
initial state are indistinguishable particles. The squark propagator introduces a
factor ~ k=2, with the momentum k depending on the external momenta due to
conservation. Depending on which of the two diagrams is viewed, k is composed
differently from the momenta of the (distinguishable) final-state squarks so that
the propagator introduces a factor proportional to either '/ (“t-channel”) or /u
(“u-channel”), necessitating the treatment of both diagrams.

As an example for the evaluation of such a Feynman diagram and the calculation
of a transition amplitude, a more detailed account of the first diagram in fig.
shall be given here. In the diagram, the color and spinor indices to be used for the
calculation as well as the four-momenta (defined to be p; + p, = k = g1 + ¢q) are
labeled. Using the Feynman rules from section one obtains

i
iM = Z_)(pZ,S/)(_igsTﬂr),ﬂ)u(pl,S) (_k_zg]lv(sab) (_igsTb(ql - ‘72)’/)
gZ
= ST Vo (= 92,052, St (P, 9).

Employing the identity [DGR04, p. 89; PS95, appendix A.3]

1

TiiTh = 200 = 27

T = 010kl » (3.4)

a
ij

with N = 3 for the three color charges of SU(N) = SU(3), this yields

81 1 I
iM = zgf(iéﬂéim - méijézm)vgm = 02) 0p (P2, Ve (p1,5) -

It can be observed that the scattering amplitude M depends on the color and spinor
indices i, j, I, m,s, s" M = My, - Since the initial color and spin states can differ
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for every individual interaction in hadron collisions, the desired quantity is the cross
section where an averaging over all such possible initial states has been performed.

Here, the sum of all transition probabilities Y |M|? = Zz’,j,l,m,s,s’ Mijim,ss shall be
determined, with the averaging (division by the number of possible initial states) to
be performed in the transition from matrix elements to cross sections in section m
In this case, the sum of the transition probabilities gives

4001 1 2
) M2 = f ( 7050 + 50m ) Voo ¥5e (@1 = 02) (01 — 2)0
X Dg (P2, 8" ) g (P1,9)is(P1,8) Ve (P2, ) -

It can easily be shown that

1 1 2 NC
( N0 + 5 0mO ) =7

with Cg = % = %. Using this and the identities [PS95, appendices A.2, A.3]
Z U (P, $)ig(pP,s) = Pog + Malup (3.5)
Z Va(p,8)0p(P,S) = P g — Myglap (3.6)

VoaTasVoe Ve = Tr(YF'Y7P77) = 4(g"7gP7 — gM°g"" +817%8"")  (37)

it follows that?

4
Z IM? = zf_;NCF(Zpl (1 = 92) P2- (91— 92) = (q1 — G2)* P1 - P2)

with the four-vector inner product x - y = xy,,. Rewriting the scalar products in
terms of the Mandelstam variables, one obtains the form given in 1i

The final results for the summed square matrix elements for all relevant processes
at leading order are

tyug — mgs
Y IMioPlqd — §1 = 4gsNCFS—2 (3.8)
sm? sm?
> IMioPlgg — ) = 284 Co(1- 2L ) - CK]ll -2 (1 - )] ©9)
tyuyg tyuq

21
N

with Co = N(N 2_1)=24and Cg = N =2Cg = %. As explained above, these

4recall m g~ 0
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sums have lost any dependence on color or spinor indices. They only depend on the
parameters (m; in this case) and the Mandelstam variables s, t1, u;. For reference,
equivalent results can be found in [Bee+97, p. 7]

3.1.2. Partonic cross sections

Having obtained the squared matrix elements, it is possible to proceed to cross
sections. The former still depend on the momenta of incoming and outgoing particles
via the Mandelstam variables s, t and u. However, since the goal is to calculate the
total cross sections, the details of neither the individual scattering angles nor the
distribution of momentum and energy between the final-state particles is of any
concern — only the energy of the colliding protons is well-defined in a hadron collider
so that all possible final states shall be considered. The task is to continue from the
transition probabilities to the differential cross section (depending on e. g. the
scattering angle) and the total cross section.

These cross sections can be obtained by performing the Lorentz-invariant phase-
space integration as outlined in [Ros09, section 9]. If one considers two-to-two particle
scattering, as is done here, the whole interaction takes place in a plane and can thus be
described using only one scattering angle ¢, being independent of the second angle ¢.
To obtain the differential cross section, it is useful in this case to perform calculations
in the center-of-mass reference frame using the scattering angle. As the (total) cross
sections are the same in all reference frames (Lorentz scalars), it is permissible to
use an arbitrary frame. Having found a result, however, the transformation back to
the Mandelstam variables is advisable — contrary to the scattering angles, which are
frame-dependent, they are Lorentz-invariant. For two final-state particles at leading
order, the differential partonic cross section in a form depending on t can then be
found to beﬂ [Bee+97, p. 8]

do® 1 2 2 2y _ 2 2
A = 1oz K —4mDHo((t - a3) (u — 33) — 3s) > IM(s, b2 (3.10)
Here, the first step function ensures that particles cannot be produced without the

necessary collision energy s (energy conservation). The factor K;; finally performs

The results presented in [Bee+97] must be divided by 2 (because only the production of #; f, and
not f,1, is to be evaluated) and n; must be set to 1 (since only one flavor is considered here) to

reproduce and (3.9).

®The dependence on u can be eliminated, see below.
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the remaining work for the averaging of the possible initial color and spin states
(previously, the transition probabilities were simply summed up). It is given by

1 L
K, = N for q7 1.n1‘t1‘a1 state | )
N1 for gg initial state

Now, one arrives at the total cross section from by integrating over the remaining
invariant .

Using the relation for the Mandelstam variables in (3.3), u can be expressed in
terms of the other two variables as u = 2m§ — s —ttoyield

P (s) = - ! Ky - 4m2) f > IM(s, HiPdt. (3.12)

67T
where the limits ¢, for the integration are derived from the second step function in

(3.10). In general, denoting the masses of the incoming particles as 1y, m, and those
of the outgoing particles as mj3, my, they are [Ros09, p. 38]

ty =mg +m3 —2p0q]) + |P1lid1; (3.13)
in this case (cf. [Max14, p. 17]):

_ oo s 1l
= m? 212\/@ 2m)2 — dm? (3.14)

by

The partonic cross sections for squark pair-production at leading order can thus
be determined to be

2
(p) =1 Az 2
olad = Gi] = == 54 (3.15)
2 31m2 2mz  my
P oo AT 5 q q —B
orol8g — qq] = 5 [ﬁ(48 + oo )+( 3 T 652)ln< y (3.16)
2
withf = |1 — @ These results are identical to those given in [Bee+98, p. 3; Bee+10,

p. 4]. Since the second Feynman diagram in fig.[3.1a| has been excluded, they are
valid only either for stop pair-production (since the massive top quarks have been
excluded as initial-state particles), or in the limit of large gluino masses [Bee+98,

p- 3l
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As can be seen in and (3.16), the leading-order cross section for stop quark
pair-production depends solely on one parameter: the (lighter) stop mass m; . As
such, analyzing the parameter space at leading order is simple (even after proceeding
to hadronic cross sections, see section[3.1.3): The cross section need only be calculated
as a function of the single unknown parameter ;.

3.1.3. Hadronic cross sections

The cross section (3.12) only describes processes where two “free” quarks or gluons
interact. However, as explained before, in hadron colliders like the LHC, protons
are made to collide. Protons are not elementary particles and contain not only three
“valence quarks” uud, but also “sea quarks” (quark-antiquark pairs) and gluons due
to the strong interaction taking place within them. Since only the momentum P and

Vs

energy - (half the collider center-of-mass energy each) of the protons is known,
it is not clear how the momentum is split up among their parton constituents, so
the remaining variable s in the cross section is not fixed. To address this, the
parton momenta are expressed as p; = x;P with the fraction of the total momentum
x;, 0 < x; < 1. This leads to s = x;x,5 (s ~ py - po) [Max14].

The distribution of partons within the proton is described by parton distribution
functions (PDFs) f;(x;), giving the probability or density of a parton i with a momen-
tum fraction of x;. These can be inferred from scattering experiments (deep-inelastic
scattering) and have been determined at different orders of «, in [MSTWOS]

The hadronic cross sections are then obtained by integrating the partonic cross
sections over the possible momentum fractions x; and x,, including the PDFs for
the respective incoming partons and the partonic cross sections. Thus, all possible
combinations of input momenta are considered and the cross sections of each scenario
summed up. The result is a convolution of the PDFs with the partonic cross sections
[Bee+97, p. 36; MSTWOS, p. 9]:

11
c(S) = Z J fﬂ(xl)fj(xz)(fi(]?)(s = x1x,S)dx dx,, i,j€{u,dcs,b,g}, (3.17)
Lj 0 0

where crl.(]P) is the partonic cross section with incoming partons i and j (quarks or

gluons, excluding top quarks).

7An updated set of PDFs has since been released [MMHT14], but these new results have only been
incorporated for leading-order calculations in this work. The impact from the difference between
these PDF sets is not expected to be very significant here.
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Figure 3.2.: Exemplary Feynman diagrams for processes at next-to-leading order demon-
strating the involvement of additional parameters. Mixed pairs (e. g. f,,) can
also be produced in these processes.

3.2. Next-to-leading order

An analytical derivation of the (partonic) cross sections for stop pair-production in
next-to-leading order is beyond the scope of this work; for an analytical discussion of
these cross sections see [Bee+98]. The NLO cross sections were obtained numerically
using the program Prospino [BHS96] and are presented in section Still, a small
overview of the NLO corrections shall be given here, revealing why these cross
sections involve four additional SUSY parameters

Figure 3.2/ shows two examples of Feynman diagrams for processes at next-to-
leading order. It is immediately obvious that the gluino mass m; becomes a relevant
parameter in such processes since the gluino propagator appears in the first diagram.
Additionally, the mixing angle 6; becomes relevant due to the quark-squark-gluino
vertex. In the second diagram, arbitrary intermediate squark-antisquark pairs can be
produced to the left of the four-squark vertex. Because of this, all possible squark
masses enter into the cross section as parameters. Since the masses of squark flavors
other than stop are taken to be degenerate here, this results in two parameters: The

heavier stop mass mm;, and the remaining squark masses 11;

8Assuming degenerate squark masses m 4s 4 # f,f. Without this assumption, the number of parame-
ters would of course increase strongly — two parameters for the two mass eigenstates of each squark
flavor in the general case, plus potential mixing parameters. For a discussion of non-degenerate
squark masses, see [Max14].



4. Numerical analysis and results

The computation of the cross sections was carried out using the results developed in
chapter 3| For leading order, C++ code was written using the [MSTW08] PDFs and
the VEGAS Monte Carlo algorithm [Lep78] to perform the numerical integration to
obtain the hadronic cross sections (3.17). These results were compared to the output
from the Prospino [BHS96] code. At next-to-leading order, Prospino was employed
exclusively to calculate the cross sections for different points in the parameter space.
Prospino works in a similar manner to the C++ code as it was modified to use the
[MSTWO08] PDFs as well and also made use of the VEGAS algorithm. All calculations
were done for a proton-proton collider with energy VS = 13TeV, reflecting the
current operation of the LHC.

Both the C++ code and Prospino used the value of the light stop mass parameter
mg, for the energy scale,i.e. Q = my — which is used both for the renormalization
scale in the coupling « as well as the factorization scale that has to be specified for
the PDFs. Code and data to compute the value of the running coupling a,(Q) at
different energy scales are part of the [MSTWO08] and [MMHT14] code. An exemplary
plot of the values obtained using this method is shown in fig. An illustration of
the PDFs themselves is given in fig. The PDFs are provided for 107 < x < 1 and
an energy scale 1GeV? < Q% < 10° GeV?2.

4.1. Leading order

As detailed above, LO results were obtained using C++ code created for this work
and Prospino. The number of VEGAS calls was chosen to be 200 000, resulting in
relative numerical errors 27/- < 6 x 10~ for almost all data points. Prospino was set
to use 10 000 VEGAS calls for all LO calculations, which gave errors < 2.5 x 107%. The
results are shown in fig. Since the leading-order calculations are comparatively
not very computationally demanding and only depend on one free parameter, the
entire extent of the LO space can be easily sampled with fine granularity. From
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Figure 4.2.: [llustration of the parton distribution functions (PDFs) f;(x, Q) from [MSTWO08]

at leading order. The energy scale Q was chosen to be 1.5TeV. The gluon
distribution has been scaled for illustration purposes. Antiquarks are not shown
(other than iz and d, they are identical to the quark PDFs).



4. Numerical analysis and results | 33

energy conservation, stops with masses up to @ = 6.5 TeV could be produced at the
LHC, although it is expected that the LHC can effectively probe SUSY up to a scale
of about 3TeV. As expected and as visible in fig. the cross section drops sharply
with increasing values of m; , ranging from 2.05 x 10=2 pb at 800 GeV to less than
10718 pb at masses > 5.5 TeV, at some point becoming experimentally infeasible. In
the middle of the figure (between 2 TeV to 4 TeV), the dependence of ¢ on the mass
might roughly be exponential. For very large masses > 5TeV, the (relative) rate of
decrease even seems to grow.

For comparison, the same calculations have been carried out using both the
[MSTWO08] and the [MMHT14] PDFs using the C++ code. Up to masses of about
3TeV, the difference is barely noticeable. However, the (relative) deviation grows
with larger masses, with the [MMHT14] set resulting in lower total cross sections.
The difference seems largely due to the difference in values of a used (see fig. [4.1).
The exact details behind this discrepancy were not pursued further, as the main
focus lay not on the comparison of the different PDF sets, but on the behavior of
fi-production with the SUSY parameters. For the masses realistically available for
probing by the LHC, the difference is not taken to be significant. For further details
on the background and data behind different PDF sets, the reader is referred to the
referenced reports.

4.2. Scan of the parameter space at next-to-leading
order

4.2.1. Approach

Since the light stop mass m; is the only parameter relevant at leading order, it is
expected that it will affect the cross section much more strongly than those param-
eters that enter only the next-to-leading order corrections. This is confirmed in
the following results. Due to this, it is not very useful to treat m; equally to the
remaining parameters. As the cross section depends much more strongly on m; ,
any contribution from the variation of the other parameters is quickly dwarfed by
even small changes in ;.

Different techniques to intelligently sample the parameter space have been con-
sidered. In the end, a “manual” approach of generating data points mainly along
the parameter axes, with broad sampling of the remaining orthogonal space was
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Figure 4.3.: Numerically calculated cross sections for #; f -pair-production at leading order
using code written for this work and using Prospino for comparison.

employed. General or sophisticated approaches to handling a large parameters space
such as Markov Chain Monte Carlo (MCMC) methods exist; another possibility
would be heuristics such as randomly sampling and observing the gradient (rate of
change) of the cross section to choose potentially interesting trajectories. However,
the space under study here was deemed of appropriate size and predictable enough
that the following method was found to be suitable: For each of the parameters, the
cross section’s dependence is analyzed by varying this parameter in rather fine steps.
For each data point, however, the other parameters are sampled in a broad interval as
well. In order to constrain the computational complexity, the step sizes along these
free parameters was coarser — with N parameters, the effort of generating all data
points where each parameter can independently assume M values scales as M. As
no specialized hardware was used for computations, this was necessary to ward off
the “curse of dimensionality” of computational complexity.

Having generated this data, the minimum, maximum and average values at each
value of the parameter under study are determined, giving a “sleeve” enveloping
the average cross section. This sleeve is an estimation and also a lower bound of how
much the cross section can vary when varying a certain parameter with the other
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parameters being free and assuming arbitrary values. As explained above, the light
stop mass was excluded since it dominates the contribution from other parameters.
Instead of including it in the “variation interval”, it was set to a number of fixed
values and the rest of the parameters were studied individually at these fixed points.
The number of VEGAS calls was chosen to be 10000 for LO and 20000 for NLO
calculations, resulting in relative numerical errors < 3 x 10~* for the total cross
sections. The number of calls to the integration routine directly influences the
numerical error on the results, but also the amount of time it takes to generate each
data point. One difficulty in the computations was that the NLO cross sections seem
to contain a pole or other anomaly at m; = m; that Prospino is unable to handle.
Due to this, the parameters were always chosen such that m; # mg, with a 5GeV
difference in cases were they would otherwise have been set to equal values.

4.2.2. Results

The average evolution of the respective parameter under study will be shown using
a single line, while the range of variation in the cross section due to the free variation
of the other parameters will be shown as a filled curve. The results focusing on m;
are given in fig. The expectation that this parameter affects the cross section
much more than the others is confirmed. The variation due to the other parameters
is barely visible as the cross section quickly drops over several orders of magnitude.
The variation due to the rough sampling of the other parameters while varying m;
is much smaller than the overall correction from calculating the NLO terms. The
behavior of the LO and NLO cross sections appears to be very similar over a large
range of values, with the difference between the two decreasing at larger stop masses.
This is to be expected as a; decreases with higher energy scales, causing higher-order
corrections to shrink. Due to the similar behavior, the range of values is similar to
the LO case (2.8 x 1072 pb at 800 GeV to less than < 107! pb). However, the NLO
corrections are quite significant in size, e.g. a 36.6 % increase over the LO cross
section at 800 GeV. The NLO corrections are always positive in this case, indicating
larger cross sections. The parameter variation affected the cross section ranging from
values 1.4 % lower to 2.2 % higher than the average at the low-mass end and 3.8 %
lower to 3.2 % higher at the high-mass end. Because the difference between LO and
NLO diminshed at higher stop masses, the variation due to the parameters became
more significant at those scales.
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Figure 4.4.: NLO cross sections using Prospino, focusing on the parameter m; . The filled

curve gives the variation of the cross section when independently varying m; ,
mg, Mg from 1TeV to 10 TeV (step size 1.5 TeV) and sin(26;) from —1 to 1 (step
size 0.25), while the solid line represents the average over all data points.

Note that the data points < 1TeV show a slightly smaller envelope as those data
points have been sampled with coarser step sizes than given above.
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On the next few pages, the results for the NLO cross sections computed using
Prospino [BHS96] when varying the other four parameters (m;z, Mg, Mg, sin(26;))
are displayed (figs.|4.5/to . Note that all figures using the same value of m; are to
the same scale to allow for comparison. Since these parameters enter the cross section
only at next-to-leading order, it is expected to depend on them much less than on
the light stop mass m; , which is already relevant at leading order. As m; affects the
cross sections much more strongly, it would not be useful to show the variation of the
cross section with this parameter varying freely — its contribution would completely
dominate any effects caused by the other parameters. As such, the cross sections were
calculated at three fixed values of n; = 1TeV,2TeV and 3TeV. The dependence
on each parameter was plotted individually, with the remaining three parameters
varying freely and being probed at a broad range of values. Atm; = 1TeV, the
cross section was found to vary between 5.65 x 1073 pb and 5.9 x 1073 pb; at 2 TeV
and 3TeV, the ranges were 1.06 x 107> pb to 1.17 x 10~ pb and 3.74 x 1078 pb to
4.05 x 10~8 pb.

Observing the results in detail, the cross section was found to hardly depend on
my atall (fig. , remaining practically constant regardless of its specific value at
all three scales. Subsequently, the envelope around the practically flat average was
rather large compared to the curves for the other parameters in all cases, indicating
that the bulk of change in the cross section is determined by those parameters and
not m; . The fact that the edges of the envelope are also practically flat (horizontal)
shows that m; does not seem to interact with the other parameters very strongly,
either, showing no indication of poles, resonances or other effects brought about by
specific configurations of several parameters.

Results for m;; are displayed in fig. The variation of m; affects the cross section
7 axis

9
which is shifted to larger values with larger m; ; it is partially cut off at m; =1TeV

only for smaller values. The cross section reaches a minimum along the m

(i.e. located at m; < 1TeV), lies at 1.8 TeV for mg = 2TeV (affecting the average
cross section by about 0.7 % compared to the flat curve at high m;) and at 2.6 TeV
for my = 3TeV (affecting the average cross section by about 0.8 %). For values of
m; larger than 3TeV to 4 TeV, the parameter’s contribution increasingly becomes
negligible as the average curve flattens out. This is to be expected, as producing
particles with masses of 10 TeV at the LHC is very unlikely. The squarks become
“decoupled” from the interactions at such masses, meaning that processes involving
them can mostly be ignored.

The cross section seems to depend most strongly on m; (disregarding m; ). The
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relevant results are shown in fig.|4.7. Especially for m; > 2TeV, it exhibits stron,
g P y f g

variation for Mg

maximum and then stabilizing somewhat below the maximum. This quick variation

< 3TeV to 4TeV, reaching first a minimum, quickly rising to a

(along with some seemingly erratic behavior which is hinted at in the transition from
minimum to maximum) is in fact due to a singularity in the NLO cross section at the
stop-decay threshold

my = Mg + 1y (m; = 173.34 GeV), [Bee+10, p. 11].

At higher values, the contribution again becomes weak, similar to the other mass
parameters. Asin the squark mass case, the gluinos are decoupled at masses > 10 TeV,
causing the dependence of the cross section on their mass to level out. Due to the
large variation of the cross section with m;, it appears that the variation envelopes
around the curves for the other parameters are completely dominated by the m;
contribution. This is also demonstrated by the fact that the envelopes around the
curves for m;

8
the m; variation is indeed what caused larger envelopes for other parameters (and is
of course absent in the m; plots).

are much smaller than those for the other parameters, showing that

8

The dependence on sin(26;) rather weak (fig. [4.8), especially at larger values for
my , where its effects appear similarly negligible as those of m; . For m; = 1TeV,
however, a larger contribution was seen from this parameter, perhaps indicating
a stronger influence for lower stop masses. For that choice of m; , the envelope
showed a qualitatively very different progression than at the higher values, devi-
ating quite a bit from the behavior of the average line. While for large absolute
values of sin(26;) the variation due to the other parameters became quite large,
indicating a stronger effect from them, a value around zero (for the positive de-
viation) or around 0.3 (for the negative deviation) minimized the envelope. The

cross section ranged from 5.77 x 10—3f};§ ; pb at the left edge (sin(26;) = —1) to

5.74 x 10737020 pb (sin(26;) = 0) and 5.736 x 1037040 pb (sin(26;) = 0.3). The
general behavior was also somewhat different for the higher values of m; : While the
cross section generally decreased with rising sin(26;) at 1 TeV, it increased slightly
for 2 TeV and 3 TeV instead. The curve always seemed to have a small “bulge” around

0, indicating a change in curvature.
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Figure 4.5.: NLO cross sections using Prospino, focusing on the parameter m1; . The filled
curve gives the variation of the cross section when independently varying m;,
My from 1TeV to 9 TeV (step size 4 TeV) and sin(26;) from —1 to 1 (step size 0.5),
while the solid line represents the average over all data points.
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5. Conclusion

The cross section for light stop pair-production for proton-proton collisions at VS =
13 TeV was calculated at leading order and next-to-leading order in this thesis. The
dependence of the cross section on different parameters was analyzed. It was found
to vary most strongly with the light stop mass m; , as this parameter is already
relevant at leading order.

The contributions by the other parameters — the heavy stop mass m;, the light-
flavor squark mass 1, the gluino mass m; and the mixing angle sin(26;) — were
found to be much smaller, less than the contribution due to the NLO correction in
general. The NLO cross section has been shown to vary in the percent range < +5 %
from the average when varying these four parameters. Due to this, for leading-order
and even (approximately) next-to-leading order treatments, it is possible to assume
the cross section to be almost constant and independent of parameters other than ; .
At higher orders or if more accuracy is required, the parameter dependence becomes
relevant. If the errors due to other sources are of the order 1 %, the error in the cross
section caused by the variation of the parameters presented here becomes significant
and should be taken into account. The first parameter that should be taken into
account is 111, as it appeared to be the NLO parameter affecting the cross section
most strongly. This is especially true around the singularity m; = mg + m;, where
the cross section varies strongly with m;. The effect of the remaining parameters
was weaker, with mg and sin(26;) having intermediate effect and My, barely affecting
the cross section at all.

The results can easily be extended to arbitrary collider energies VS (e. g. the LHC
design energy VS = 14TeV). Improvements on the accuracy could perhaps be
achieved by incorporating the newer set of [MMHT14] PDFs into the NLO calcula-
tions as well. As all computations were executed on ordinary consumer hardware,
it has become clear that for this five-parameter problem, even sampling the entire
relevant parameter space is computationally feasible using appropriate equipment.
For example, generating all data points where all five parameters assume 50 different
values (corresponding to a granularity of 180 GeV steps in a 9 TeV range, for exam-
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ple using 1000 CPU cores which can each generate data points at a rate of 157!, the
computation would take about 3.6 days.

'This is only for illustration — the parameters m; and m; have bounds restricting their range,
requiring fewer data points, for example.



A. Notation and conventions

Throughout this work, the Einstein summation convention is employed unless noted
otherwise. The signature of the metric tensor g#" is chosen to be (+, —, —, —), i.e.

10 0 0
0 -1 0 0

HVY = =

@=Gw =19 o _1 o0
00 0 -1

With this, the contravariant and covariant four-vectors are
(AM) = (A% A) and (A4,) = (4, -A),

respectively. Accordingly, an inner product between two vectors x, y in Minkowski
space is defined as

x-y=xty, =xtg, y".

The so-called “Feynman slash notation” is used, which is given by
A=9"A,

for any four-vector A, with the Dirac matrices y*. Physical quantities are given in
natural units, i. e. velocities are expressed in units of the speed of light in vacuum ¢
and action or angular momenta are given in units of the reduced Planck constant 7.
The notation employed is then

h=1

with the physical dimension implicit in the seemingly dimensionless expressions
on the right-hand side. The values for physical constants have been taken from
[CODATA], unless noted otherwise. Commutators and anticommutators of two
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operators A, B are denoted using
[A,B]=AB—-—BA and {A,B} =AB+ BA

respectively. Where not stated otherwise, é(x), 8(x) and (Si]- denote the Dirac ¢ distri-
bution, the step function and the Kronecker symbol with the usual definitions.

In Feynman diagrams, time is taken to be increasing towards the right on the
horizontal axis while space increases upwards on the vertical axis. Correspondingly,
particles “travelling to the left” are antimatter particles. The usual conventions are
followed: Fermions are represented by solid lines with arrows, scalar particles by
dashed lines, gluons by curly lines and gluinos by curly lines with an additional
solid line. Standard Model particles are labeled by their usual symbols, while the
corresponding SUSY particles are endowed with a tilde. Anti-particles are denoted

with a bar above. In calculations, the gauge was chosen such that ¢ = 1, simplifying

&
4

gluon propagators (cf. (2.22)). The strong coupling «, is given by &g =




B. Technical details

The version of Prospino used is Prospinol, which is publicly available at the address
http://tiger.web.psi.ch/proglist.html [BHS96]. Prospinol was modified to
work with the [MSTWO08] PDFs; this modified version was provided by Christoph
Borschensky (borschensky@uni-muenster.de) in private communication. Numeri-
cal integrations were carried out using the VEGAS Monte Carlo integration algorithm
[Lep78] implemented in the GNU Scientific Library (GSL), version 1.16 [Gal+]. Plots
were created using gnuplot [W+14].

The calculations were performed using double-precision floating-point numbers.
While rounding errors and accumulation of errors over many operations are always
a concern in numerical computations, the amount of precision provided by 64 bit
floating-point numbers should be more than sufficient compared to the numerical
errors incurred due to the Monte Carlo integration. The errors estimates provided by
VEGAS are assumed to be reliable. The fact that two independently written programs
(although partially using the same library and data) provide exactly the same results
also boosts confidence in the numerical computations.

I am grateful to Christoph Borschensky for many answers and explanations and
to Prof. Kulesza for offering this subject as a bachelor’s thesis.


http://tiger.web.psi.ch/proglist.html
mailto:borschensky@uni-muenster.de
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