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Abstract. We study the relation of the notion of weak admissibility
in families of filtered ϕ-modules, as considered in [He], with the adjoint
quotient. We show that the weakly admissible subset is an open subva-
riety in the fibers over the adjoint quotient. Further we determine the
image of the weakly admissible set in the adjoint quotient generalizing
earlier work of Breuil and Schneider.

1. Introduction

Filtered ϕ-modules appear in p-adic Hodge-theory as a category of lin-
ear algebra data describing crystalline representations of the absolute Ga-
lois group of a local p-adic field. More precisely, there is an equivalence of
categories between crystalline representations and weakly admissible filtered
ϕ-modules, see [CF]. Here weak admissibility is a semi-stability condition
relating the slopes of the ϕ-linear endomorphism Φ with the filtration.

In our companion paper [He] we define and study arithmetic families of
filtered ϕ-modules and crystalline representations. Our families are param-
eterized by rigid analytic spaces or adic spaces in the sense of Huber, see
[Hu2] for example. We show that the condition of being weakly admissible
is an open condition [He, Theorem 1.1] and that there is an open subset of
the weakly admissible locus over which there exists a family of crystalline
representations giving rise to the family of filtered ϕ-modules [He, Theorem
1.3].

In this paper we study the weakly admissible locus in more detail. In the
setting of period domains in the sense of Rapoport and Zink [RZ], the weakly
admissible locus is an admissible open subset of a flag variety. Contrarily,
the weakly admissible locus in our set up has an algebraic nature as soon as
we fix the Frobenius Φ, or even the conjugacy class of its semi-simplification.
Further we analyze the image of the weakly admissible locus in the adjoint
quotient. The question whether there exists a weakly admissible filtration
for a fixed conjugacy class of the semisimplification of the Frobenius already
appears in work of Breuil and Schneider [BS] on the p-adic Langlands corre-
spondence. Unlike the characterization in [BS], our characterization of the
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set of automorphisms Φ for which there exists a weakly admissible filtration
is purely in terms of the adjoint quotient of GLd.

Our main results are as follows: Fix a finite extension K of Qp and write
K0 for the maximal unramified extension of Qp inside K. Let d > 0 be
an integer and denote by A ⊂ GLd the diagonal torus. For a dominant
cocharacter

ν : Gm,Q̄p −→ (ResK/Qp A)Q̄p

we write Grν for the partial flag variety of ResK/Qp GLd parametrizing flags
of "type ν", see section 3.1 for the precise definition. This variety is defined
over the reflex field E of ν. As in [He, 4.1] we denote by

Dν =
(
(ResK0/Qp GLd)E ×Grν

)
/(ResK0/Qp GLd)E

the stack of filtered ϕ-modules with filtration of "type ν" on the category of
adic spaces locally of finite type. The action of (ResK0/Qp GLd)E is explicitly
described in (3.4). Let W denote the Weyl group of GLd. We will define a
morphism

α : Dν −→ (A/W )ad

to the adification (see [Hu2, Remark 4.6 (i)]) of the adjoint quotient A/W
and prove the following theorem.

Theorem 1.1. Let x ∈ (A/W )ad
E and form the 2-fiber product

α−1(x)wa //

��

Dwa
ν

��
x // (A/W )ad

E .

Then there Artin stack in schemes A over the field k(x) such that

α−1(x)wa = Aad.

The stack A is the stack quotient of a quasi-projective k(x)-variety.

Further we determine the image of the weakly admissible locus Dwa
ν under

the morphism α. The description of this image works in the category of
analytic spaces in the sense of Berkovich.

Theorem 1.2. Let ν be a dominant coweight as above. There is a dominant
coweight µ(ν) of GLd associated to ν such that

α−1(x)wa 6= ∅ ⇐⇒ x ∈ (A/W )≤µ(ν).

Here (A/W )≤µ(ν) is a Newton-stratum in the sense of Kottwitz [Ko].

The coweight µ(ν) which appears in the theorem is explicit and defined in
Definition 5.4
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2. Filtered ϕ-modules

Throughout this section we denote by F a topological field containing Qp

with a continuous valuation vF : F → ΓF ∪{0} in the sense of [Hu1, 2, Defi-
nition] that is ΓF is a totally ordered abelian group (written multiplicative)
and

vF (0) = 0

vF (1) = 1

vF (ab) = vF (a)vF (b)

vF (a+ b) ≤ max{vF (a), vF (b)},

where the order on ΓF is extended to ΓF ∪ {0} by 0 < γ for all γ ∈ ΓF . We
will introduce the notion of a filtered ϕ-module with coefficients in F and
define weak admissibility for these objects.
Recall that K0 is an unramified extension of Qp with residue field k and
write f = [K0 : Qp]. We write ϕ for the lift of the absolute Frobenius to K0.

2.1. ϕ-modules with coefficients. In this subsection we define and study
what we call isocrystals over k with coefficients in F .

Definition 2.1. An isocrystal over k with coefficients in F is a free F⊗QpK0-
module D of finite rank together with an automorphism Φ : D → D that is
semi-linear with respect to id⊗ϕ : F ⊗Qp K0 → F ⊗Qp K0.
A morphism f : (D,Φ) → (D′,Φ′) is an F ⊗Qp K0-linear map f : D → D′

such that
f ◦ Φ = Φ′ ◦ f.

The category of isocrystals over k with coefficients in F is denoted by
Isoc(k)F .

It is easy to see that Isoc(k)F is an F -linear abelian ⊗-category with the
obvious notions of direct sums and tensor products.

Remark 2.2. (i) Given an F ⊗QpK0-module D of finite type, the existence of
a semi-linear automorphism Φ : D → D implies that D is free over F⊗QpK0.
This fact will be used in the sequel.
(ii) In the classical setting an isocrystal over k is a finite-dimensional K0-
vector space with ϕ-linear automorphism Φ, i.e. an object in Isoc(k)Qp .
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If F is finite over Qp, then an isocrystal over k with coefficients in F is the
same as an object (D,Φ) ∈ Isoc(k)Qp together with a map

F −→ EndΦ(D),

where the subscript Φ on the right hand side indicates that the endomor-
phisms commute with Φ (compare [DOR, VIII, 5] for example). This is
clearly equivalent to our definition.

Let F ′ be an extension of F with valuation vF ′ : F ′ → ΓF ′ ∪{0} extending
the valuation vF . The extension of scalars from F to F ′ is the functor

(2.1) −⊗F F ′ : Isoc(k)F −→ Isoc(k)F ′

that maps (D,Φ) ∈ Isoc(k)F to the object (D ⊗F F ′,Φ⊗ id).

If F ′ is a finite extension of F , then we also define the restriction of scalars

(2.2) εF ′/F : Isoc(k)F ′ −→ Isoc(k)F .

This functor maps (D′,Φ′) ∈ Isoc(k)F ′ to itself, forgetting the F ′-action but
keeping the F -action.

We write ΓF ⊗Q for the localisation of the abelian group ΓF . Then every
element γ′ ∈ ΓF ⊗Q can be written as a single tensor γ ⊗ r and we extend
the total order of ΓF to ΓF ⊗Q by

a⊗ 1
m < b⊗ 1

n ⇔ an < bm.

Definition 2.3. Let (D,Φ) ∈ Isoc(k)F and d = rkF⊗QpK0 D. The map
Φf : D → D is an F -linear automorphism of the fd-dimensional F -vector
space D.
(i) Define the Newton slope of (D,Φ) as

λ
(F )
N (D,Φ) = vF (detF Φf )⊗ 1

f2d
∈ ΓF ⊗Q.

Here detF means that we take the determinant of an F -linear map on an
F -vector space.
(ii) Let λ ∈ ΓF ⊗ Q. An object (D,Φ) ∈ Isoc(k)F is called purely of
Newton-slope λ if for all Φ-stable F ⊗Qp K0-submodules D′ ⊂ D we have
λ

(F )
N (D′,Φ|D′) = λ.

Lemma 2.4. Let F ′ be an extension of F with valuation vF ′ extending vF
and (D,Φ) ∈ Isoc(k)F . Then

λ
(F ′)
N (D ⊗F F ′,Φ⊗ id) = λ

(F )
N (D,Φ).

If in addition F ′ is finite over F and (D′,Φ′) ∈ Isoc(k)F ′ , then

λ
(F )
N (εF ′/F (D′,Φ′)) = λ

(F ′)
N (D′,Φ′).

Proof. These are straightforward computations. �
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As the Newton slope is preserved under extension and restriction of scalars
we will just write λN in the sequel.

Remark 2.5. Let (D,Φ) ∈ Isoc(k)Qp be an object of rank d and denote for
the moment by vp the usual p-adic valuation on Qp. Write | − | = p−vp(−).
Then the value group of the absolute value is ΓQp = pZ and we identify
ΓQp ⊗Q with the subgroup pQ of R\{0}. Our definitions then imply

(2.3) λN (D,Φ) = p−
1
dvp(detK0

Φ).

Here vp(detK0 Φ) is the p-adic valuation of the determinant over K0 of any
matrix representing the semi-linear map Φ in some chosen basis. This matrix
is well defined up to ϕ-conjugation and hence the valuation of the determi-
nant is independent of choices. Note that (the negative of) the exponent in
(2.3) is the usual Newton slope of the isocrystal (D,Φ) over k, compare [Zi]
for example.

Proposition 2.6. Let (D,Φ) ∈ Isoc(k)F , then there exist unique elements
λ1 < λ2 < · · · < λr ∈ ΓF ⊗Q and a unique decomposition

D = D1 ⊕D2 ⊕ · · · ⊕Dr

of D into Φ-stable F ⊗Qp K0-submodules such that (Di,Φ|Di) is purely of
Newton slope λi.

Proof. First we show the existence of such a decomposition. The uniqueness
will then follow from Lemma 2.9 below.
Step 1: Assume first that there exists an embedding ψ0 : K0 ↪→ F .
We obtain an isomorphism

F ⊗Qp K0

∼= //
∏
ψ:K0→F F.

The endomorphism id⊗ϕ on the left hand side translates to the shift of
the factors on the right hand side. Further we obtain the corresponding
decomposition

D =
∏
ψ

Vψ

into F -vector spaces Vψ and F -linear isomorphisms

Φψ = Φ|Vψ : Vψ
∼= // Vψ◦ϕ.

There is a bijection between the Φ-stable subspaces D′ of D and the Φf |Vψ0 -
stable subspaces of Vψ0 given by D′ 7→ D′ ∩ Vψ0 .
Given D′ ⊂ D and U = D′ ∩ Vψ0 we have

λN (D′,Φ|D′) = vF (detF Φf |U )⊗ 1
f dimF U

∈ ΓF ⊗Q.
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Hence the desired decomposition of D is induced by the decomposition of
Vψ0 into the maximal Φf |Vψ0 -stable subspaces U ⊂ Vψ0 such that

vF (detF Φf |U ′)⊗ 1
f dimF U ′

= λi

for all Φf -stable subspaces U ′ ⊂ U .
Step 2: If there is no embedding ψ of K0 into F , then we find a finite
extension F ′ = FK0 of F such that K0 embeds into F ′. We want to deduce
the result from Step 1 by Galois descent. The extension F ′ is Galois over F ,
as K0 is Galois over Qp. Further we extend the valuation from F to F ′ by
setting vF (O×K0

) = {1}, where OK0 ⊂ K0 is the ring of integers.
Write (D′,Φ′) for the extension of scalars of (D,Φ) ∈ Isoc(k)F to Isoc(k)F ′ .
Then there exists λ1 < λ2 < · · · < λr ∈ ΓF ⊗Q and a decomposition

(2.4) D′ = D′1 ⊕D′2 ⊕ . . . D′r
such that the D′i are Φ′-stable and (D′i,Φ

′|D′i) is purely of slope λi. Now
the action of the Galois group Gal(F ′/F ) preserves the valuation on F ′ and
hence also the Newton slope of a Φ′-stable subobject of D′. It follows that
Gal(F ′/F ) preserves the decomposition (2.4) and hence this decomposition
descends to D. �

Remark 2.7. Proposition 2.6 replaces the slope decomposition in the classical
context (c. f. [Zi, VI, 3] for example).

Definition 2.8. Let (D,Φ) ∈ Isoc(k)F and denote by D =
⊕
Di a decom-

position of D into Φ-stable submodules purely of slope λi ∈ ΓF ⊗ Q as in
Proposition 2.6. We will refer to this as the slope decomposition. Further,
for λ ∈ ΓF ⊗Q we define

Dλ =

{
Di , λ = λi

0 otherwise.

Lemma 2.9. Let f : (D,Φ)→ (D′,Φ′) be a morphism in Isoc(k)F . Consider
slope decompositions D =

⊕
Di and D′ =

⊕
D′j as in Proposition 2.6. Then

for all λ ∈ ΓF ⊗Q
f(Dλ) ⊂ D′λ.

Proof. This is an immediate consequence of f ◦ Φ = Φ′ ◦ f . �

2.2. Filtered Isocrystals with coefficients. Recall that K is a totally
ramified extension of K0. We denote by e = [K : K0] the ramification index
of K. In this section we define the basic object of our study.

Definition 2.10. A K-filtered isocrystal over k with coefficients in F is a
triple (D,Φ,F•), where (D,Φ) ∈ Isoc(k)F and F• is a descending, separated
and exhaustive Z-filtration on DK = D ⊗K0 K by (not necessarily free)
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F ⊗Qp K-submodules.
A morphism

f : (D,Φ,F•) −→ (D′,Φ′,F ′•)
is a morphism f : (D,Φ)→ (D′,Φ′) in Isoc(k)F such that f⊗ id : DK → D′K
respects the filtrations.
The category of K-filtered isocrystals over k with coefficients in F is denoted
by Fil Isoc(k)KF .

It is easy to see that Fil Isoc(k)KF is an F -linear ⊗-category. Further it has
obvious notions of kernels, cokernels and exact sequences. For an extension
F ′ of F we again have an extension of scalars like in (2.1),

−⊗F F ′ : Fil Isoc(k)KF −→ Fil Isoc(k)KF ′ .

If F ′ is finite over F , we also have a restriction of scalars like in (2.2),

εF ′/F : Fil Isoc(k)KF ′ −→ Fil Isoc(k)KF .

In the following we will often shorten our notation and just write D for an
object (D,Φ,F•) ∈ Fil Isoc(k)KF .

We now want to develop a slope theory for filtered isocrystals and define
weakly admissible objects.

Definition 2.11. Let (D,Φ,F•) ∈ Fil Isoc(k)KF . We define

degF• =
∑
i∈Z

1
ef idimF griF•

degF (D) = (vF (detF Φf )⊗ 1
f2

)−1 vF (p)deg(F•) ∈ ΓF ⊗Q

µF (D) = degF (D)(1⊗ 1
d) ∈ ΓF ⊗Q.

We call µF (D) the slope of D.

Remark 2.12. As in Lemma 2.4, one easily sees that the slope µF is preserved
under extension and restriction of scalars. Hence we will just write µ in the
sequel.

Now we have a Harder-Narasimhan formalism as in [DOR, Chapter 1].
The only difference is that our valuations are written multiplicatively, while
in the usual theory they are written additively. We will only sketch the
proofs and refer to [DOR] for the details.

Lemma 2.13. Let

0 // D′ // D // D′′ // 0

be a short exact sequence in Fil Isoc(k)KF . Then

degF (D) = degF (D′) degF (D′′).

Further
max{µ(D′), µ(D′′)} ≥ µ(D) ≥ min{µ(D′), µ(D′′)}.
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The sequence µ(D′), µ(D), µ(D′′) is either strictly increasing or strictly de-
creasing or stationary.

Proof. The first assertion is obvious from the definitions and the second is a
direct consequence. �

Lemma 2.14. Let f : D → D′ be a morphism in Fil Isoc(k)KF . Then

degF (coim f) ≥ degF (im f).

Proof. Replacing D by coim f and D′ by im f , we may assume that f is an
isomorphism in Isoc(k)F . Now the assertion follows easily from

(f ⊗ id)(F i) ⊂ F ′i.
�

Definition 2.15. An object (D,Φ,F•) ∈ Fil Isoc(k)KF is called semi-stable
if, for all Φ-stable subobjects D′ ⊂ D, we have µ(D′) ≥ µ(D). It is called
stable if the inequality is strict for all proper subobjects. Finally D is called
weakly admissible if it is semi-stable of slope 1.

Note that semi-stability is defined using "≥" instead of "≤" (as in [DOR]),
since our valuations are written multiplicatively.

Remark 2.16. Let (D,Φ,F•) ∈ Fil Isoc(k)KQp . Using the notations of Remark
2.5, we find

µ(D) = p
1
d

(
vp(detK0

Φ)−
∑
i idimK(Fi/Fi+1)

)
.

Hence we see thatD is weakly admissible if and only if it is weakly admissible
in the sense of [CF, 3.4].

Proposition 2.17. Let D,D′ ∈ Fil Isoc(k)KF be semi-stable objects.
(i) If µ(D) < µ(D′), then Hom(D,D′) = 0.
(ii) If µ(D) = µ(D′) = µ, then for all f ∈ Hom(D,D′) we have im f ∼=
coim f and the objects ker f , coker f and im f are semi-stable of slope µ.

Proof. The proof is the same as in [DOR, Proposition 1.1.20] �

Corollary 2.18. Let µ ∈ Γ ⊗ Q, then the full subcategory of Fil Isoc(k)KF
consisting of semi-stable objects of slope µ is an abelian, artinian and noe-
therian category which is stable under extensions. The simple objects are
exactly the stable ones.

Proof. The proof is the same as the proof of [DOR, Corollary 1.2.21]. �

The main result of this section is the existence of a Harder-Narasimhan
filtration for the objects in Fil Isoc(k)KF . The existence of this filtration will
also imply that semi-stability (and hence weak admissibility) is preserved
under extension and restriction of scalars.
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Proposition 2.19. Let D ∈ Fil Isoc(k)KF , then there exist unique elements
µ1 < µ2 < · · · < µr ∈ ΓF ⊗Q and a unique filtration

0 = D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dr = D

of D in Fil Isoc(k)KF such that Di/Di−1 is semi-stable of slope µi.

Proof. The proof is similar to the proof of [DOR, Proposition 1.3.1 (a)].
First we prove the existence of the filtration. The uniqueness will then follow
from Lemma 2.21 below.
By the existence of the slope decomposition in Proposition 2.6, the set

{µ(D′) | D′ ⊂ D stable under Φ}
is finite. Hence there is a unique minimal element µ1 and we claim that there
is a maximal subobject D1 ⊂ D of slope µ1 which then must be semi-stable.
This follows, as the sum of two subobjects of slope µ1 has again slope µ1, by
Lemma 2.13 and the minimality of µ1.
Proceeding with D/D1 the claim follows by induction. �

Definition 2.20. Let D ∈ Fil Isoc(k)KF and denote by

0 = D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ Dr = D

a filtration as in Proposition 2.19. This filtration is called the Harder-
Narasimhan filtration of D. For µ ∈ ΓF ⊗Q we define

D(µ) =


0 if µ < µ1

Di if µi ≤ µ < µi+1

D if µ ≥ µr.

Lemma 2.21. Let f : D → D′ be a morphism in Fil Isoc(k)KF and fix
filtrations of D and D′ as in Proposition 2.19. Let µ ∈ ΓF ⊗ Q, then (with
the notation of Definition 2.20):

f(D(µ)) ⊂ D′(µ).

Proof. The proof is the same as in [DOR, Proposition 1.3.1 (b)]. �

Corollary 2.22. Let F ′ be an extension of F with valuation vF ′ extending
vF and D ∈ Fil Isoc(k)KF . Then D is semi-stable of slope µ, if and only if
D′ = D ⊗F F ′ is semi-stable of slope µ.
If in addition F ′ is finite over F , then D′ ∈ Fil Isoc(k)KF ′ is semi-stable of
slope µ, if and only if εF ′/F (D′) ∈ Fil Isoc(k)KF is semi-stable of slope µ.

Proof. First it is clear that semi-stability of D′ implies semi-stability of D, as
every Φ-stable F -subspace of D defines a Φ-stable F ′-subspace of D′ which
has the same slope.

Now assume that D is semi-stable. We may assume that F ′ is finitely
generated over F , as every counterexample for the semi-stability condition is
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defined over a finitely generated extension. Then F ′ is an algebraic extension
of a purely transcendental extension and we can treat both cases separately.

Assume first that F ′ is an algebraic extension of F . We may replace it by
its Galois hull and denote by G = Gal(F ′/F ) the Galois group of F ′ over F .
Then the action of G preserves the valuation on F ′. We denote by

0 = D′0 ⊂ D′1 ⊂ D′2 ⊂ · · · ⊂ D′r = D′

the Harder-Narasimhan filtration of D′. The action of G commutes with
Φ and preserves the filtration F• ⊗F F ′ of D′ ⊗K0 K. It follows that it
preserves the slope of a Φ-stable subobject and hence preserves the Harder-
Narasimhan filtration. It follows that the filtration descends to F and hence
it can only have one step, as D is semi-stable.

Assume now that F ′ is purely transcendental over F . By the above dis-
cussion of algebraic extensions we may also assume that F is algebraically
closed. Again we write G = Aut(F ′/F ) for the group of F -automorphisms of
F ′. As above we only need to check that G preserves the slope of a Φ-stable
subobject of D′. Let U ⊂ D′ be such a Φ-stable subspace. Then U is a
direct sum of indecomposable Φ-modules Ui such that the isomorphism class
of Ui is defined over F . This can be seen as follows: We decompose D as a
product

D = V1 × · · · × Vf
of F -vector spaces such that Φ induces a linear map Φi : Vi → Vi+1, where
Vf+1 := V1. We can choose bases of these vector spaces such that the matrix
of Φ is represented by the tuple (id, . . . , id, A) for some A ∈ GLd(F ) in
Jordan canonical form. If we choose a similar canonical form for Φ|U , then
it is clear that every Jordan-Block for Φ|U is a sub-Jordan-block of A.

It follows that detF ′(Φ
f |U ) ∈ F and hence the action of G preserves the

slope of U , which yields the claim by the same descend argument as above.

Now assume that F ′ is finite over F and D′ is a semi-stable object of
Fil Isoc(k)KF ′ . Consider the Harder-Narasimhan filtration of εF ′/F (D′). By
Lemma 2.21 the filtration steps are stable under the operation of F ′. Hence
the filtration can have only one step.

If conversely εF ′/F (D′) is known to be semi-stable, then every Φ-stable
F ′-subspace of D′ is a Φ-stable F -subspace of εF ′/F (D′), and hence semi-
stability of D′ follows. �

3. Families of filtered ϕ-modules

It is shown in [He, 4] that the stack of weakly admissible filtered ϕ-modules
is an open substack of the stack of filtered ϕ-modules. We briefly recall this
result before we study the weakly admissible locus in the fibers over the
adjoint quotient. We write RigE for the category of rigid analytic spaces
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over a finite extension E of Qp (see [BGR] and also [Bo] for an introduction
to rigid geometry) and Adlft

E for the category of adic spaces locally of finite
type over E, see [Hu2].

3.1. Stacks of filtered ϕ-modules. Let d be a positive integer and ν an
algebraic cocharacter

(3.1) ν : Q̄×p −→ (ResK/Qp AK)(Q̄p),

where A ⊂ GLd is the diagonal torus. We assume that this cocharacter is
dominant with respect to the restriction B of the Borel subgroup of upper
triangular matrices in (GLd)K . We write E ⊂ Q̄p for the reflex field of
ν, i.e. the field of definition of the cocharacter ν, see below for a precise
characterization. Let ∆ denote the set of simple roots (defined over Q̄p) of
ResK/Qp GLd with respect to B and denote by ∆ν ⊂ ∆ the set of all simple
roots α such that 〈α, ν〉 = 0. Here 〈−,−〉 is the canonical pairing between
characters and cocharacters. We write Pν for the parabolic subgroup of
(ResK/Qp GLd) containing B and corresponding to ∆ν ⊂ ∆. This parabolic
subgroup is defined over E, and the quotient by this parabolic is a projective
E-variety

(3.2) GrK,ν = (ResK/Qp GLd)E/Pν

representing the functor

S 7→ {filtrations F• of OS ⊗Qp K
d of type ν}

on the category of E-schemes. Here the filtrations are locally on S direct
summands. Being of type ν means the following. Assume that the cochar-
acter

ν : Q̄×p −→
∏

ψ:K→Q̄p

GLd(Q̄p)

is given by cocharacters

νψ : λ 7→ diag((λi1(ψ))(m1(ψ)), . . . , (λir(ψ))(mr(ψ)))

for some integers ij(ψ) ∈ Z, with ij(ψ) 6= ij′(ψ) for j 6= j′, and multiplicities
mj(ψ) > 0. Then any point F• ∈ GrK,ν(Q̄p) is a filtration

∏
ψ F•ψ of

∏
ψ Q̄d

p

such that

dimQ̄p gri(F•ψ) =

{
0 if i /∈ {i1(ψ), . . . , ir(ψ)}
mj(ψ) if i = ij(ψ).

In terms of the integers ij(ψ) and mj(ψ) the fact that ν is dominant means
that ij(ψ) ≥ ij+1(ψ) for all j and ψ. The reflex field E of the character ν is
characterized by the requirement

Gal(Q̄p/E) = {σ ∈ Gal(Q̄p/Qp) | ij(ψ) = ij(σψ), mj(ψ) = mj(σψ)}.

We denote by Grrig
K,ν resp. Grad

K,ν the associated rigid space, resp. the asso-
ciated adic space (cf. [BGR, 9.3.4] and [Hu2, Remark 4.6 (i)]).
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Given ν as in (3.1) and denoting as before by E the reflex field of ν, we
consider the following fpqc-stack Dν on the category RigE (resp. on the
category Adlft

E ). For X ∈ RigE (resp. Adlft
E ) the groupoid Dν(X) consists of

triples (D,Φ,F•), where D is a coherent OX⊗QpK0-module which is locally
on X free over OX⊗QpK0 and Φ : D → D is an id⊗ϕ-linear automorphism.
Finally F• is a filtration of DK = D ⊗K0 K of type ν, i.e. after choosing
fpqc-locally on X a basis of D, the filtration F• induces a map to Grrig

K,ν

(resp. Grad
K,ν), compare also [PR, 5.a].

One easily sees that the stack Dν is the stack quotient of the rigid space

(3.3) Xν = (ResK0/Qp GLd)
rig
E ×Grrig

K,ν

by the ϕ-conjugation action of (ResK0/Qp GLd)
rig
E given by

(3.4) (A,F•) · g = (g−1Aϕ(g), g−1F•).

Here the canonical map Xν → Dν is given by

(A,F•) 7→ (OXν ⊗Qp K
d
0 , A(id⊗ϕ),F•).

3.2. The weakly admissible locus. Fix a cocharacter ν with reflex field
E as in the previous section. If X ∈ Adlft

E and x ∈ X, then our definitions
imply that, given (D,Φ,F•) ∈ Dν(X), we have

(D ⊗ k(x),Φ⊗ id,F• ⊗ k(x)) ∈ Fil Isoc(k)Kk(x)

One of the main results of [He] is concerned with the structure of the weakly
admissible locus in the stacks Dν defined above.

Theorem 3.1. Let ν be a cocharacter as in (3.1) and X be an adic space
locally of finite type over the reflex field of ν. If (D,Φ,F•) ∈ Dν(X), then
the weakly admissible locus

Xwa = {x ∈ X | (D ⊗ k(x),Φ⊗ id,F• ⊗ k(x)) is weakly admissible}

is an open subset. Especially it has a canonical structure of an adic space.

Proof. This is [He, Theorem 4.1]. �

We can define a substack Dwa
ν ⊂ Dν consisting of the weakly admissible

filtered isocrystals. More precisely, for an adic space X the groupoid Dwa
ν (X)

consists of those triples (D,Φ,F•) such that (D⊗ k(x),Φ⊗ id,F•⊗ k(x)) is
weakly admissible for all x ∈ X. Thanks to Corollary 2.22 it is clear that this
is again an fpqc-stack. The following result is now an obvious consequence
of Theorem 3.1.

Corollary 3.2. The stack Dwa
ν on the category of adic spaces locally of finite

type over the reflex field of ν is an open substack of Dν .
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4. The fibers over the adjoint quotient

We now come to the main results of this paper. We want to link the weakly
admissible locus in

(ResK0/Qp GLd×GrK,ν)ad

as considered in the previous section to the adjoint quotient of the group
GLd. This relation was studied by Breuil and Schneider in [BS]. In this
section we show that the fibers over the adjoint quotient are (base changes of)
analytifications of schemes over Qp and hence the period stacks considered
here have a much more algebraic nature than the period spaces considered
by Rapoport and Zink in [RZ]. In the next section we determine the image
of the weakly admissible locus in the adjoint quotient and identify it with a
closed Newton-stratum in the sense of Kottwitz [Ko].

First we need to recall some notations and facts about the adjoint quotient
from [Ko]. We write GLd = GL(V ) for the general linear group over Qp,
where V = Qd

p, and B ⊂ GLd for the Borel subgroup of upper triangular
matrices. Further we denote by A ⊂ B the diagonal torus and identifyX∗(A)
and X∗(A) with Zd in the usual way, i.e. (m1, . . . , nd) ∈ Zd defines(

t 7→ diag(tm1 , . . . , tmd)
)
∈ X∗(A)

resp.
(
diag(t1, . . . , td) 7→ tm1

1 . . . tmdd
)
∈ X∗(A).

Let ∆ = {α1, . . . , αd−1} be the simple roots defined by B, i.e. 〈αi, ν〉 =
νi − νi+1 for all ν ∈ X∗(A). We also choose lifts

ωi = (1(i), 0(d−i)) ∈ Zd = X∗(A)

of the dual basis $1, . . . $d−1 ∈ X∗(A∩SLd) of the coroots. FinallyW = Sd
denotes the Weyl group of (GLd, A). There is a map

c : A −→ Ad−1 ×Gm

which maps an element of A to the coefficients of its characteristic polyno-
mial. This morphism identifies A/W with Ad−1 ×Gm.

Now we will define a map

(4.1) G = ResK0/Qp(GLd)K0 −→ A/W

that is invariant under ϕ-conjugation on the left side. Recall that we have
identifications GLd = GL(V ) and (GLd)K0 = GL(V0), where V0 = V ⊗QpK0.
For an Qp-algebra R and g ∈ G(R) we have the R ⊗Qp K0-linear automor-
phism Φf

g = (g(id⊗ϕ))f of R ⊗Qp V0. Its characteristic polynomial is an
element of (R ⊗Qp K0)[T ]. Now this polynomial is invariant under id⊗ϕ
and hence it already lies in R[T ] which can be seen as follows: First we may
assume that K0 embeds into R, as R = R′∩ (R⊗QpK0) ⊂ R′⊗QpK0 for any
extension R′ of R. As in the proof of Proposition 2.6, we choose decompo-
sitions R⊗Qp K0 =

∏f
i=1R and D =

∏f
i=1 Vi such that Φg maps Vi to Vi+1,
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where Vf+1 = V1. Then Φf
g induces automorphisms Φi on Vi. It follows that

charpoly(Φf
g ) = (charpoly(Φ1), . . . , charpoly(Φf )).

However, Φi+1 = Φ|Vi◦Φi◦(Φ|Vi)−1 and hence charpoly(Φi) = charpoly(Φi+1).

We define the morphism in (4.1) by mapping g ∈ G(R) to the coefficients
of this polynomial. It is easy to check that this morphism is invariant under
ϕ-conjugation on G and hence we get morphisms

(4.2)

G×GrK,ν

��

α̃ // (A/W )E

=

��
Dν

α // (A/W )E ,

where Dν is the stack-quotient

Dν = (GE ×GrK,ν)/G

on the category of E-schemes, where the action of G on GE × GrK,ν is the
same as in (3.4). Here ν is a cocharacter as in (3.1) and E is the reflex field
of ν. We also write α and α̃ for the analytification of these morphisms.

Theorem 4.1. Let x ∈ (A/W )ad
E and ν be a cocharacter as in (3.1). Then

there exists a quasi-projective k(x)-scheme X which is an open subscheme of
α̃−1(x) such that the weakly admissible locus in the fiber over x is given by

α̃−1(x)wa = Xad.

Proof. The proof will be similar to the proof of [He, Theorem 4.1].

Let x = (c1, . . . , cd) ∈ k(x)d−1 × k(x)× and let vx denote the (multiplica-
tive) valuation on k(x). First note that

cd = detk(x)⊗QpK0
(Φf ) = detk(x)(Φ

f )1/f

and hence α̃−1(x)wa = ∅ unless

vx(cd)
1/f = vx(p)

∑
j∈Z j

1
ef dimk(x) grj F• ,

where F• is the universal filtration on GrK,ν . In the following we will assume
that this condition is satisfied. For i ∈ {0, . . . , d}, consider the following
functor on the category of Qp-schemes,

S 7−→
{
E ⊂ OS ⊗Qp V0 locally free OS ⊗Qp K0-submodule
of rank i that is locally on S a direct summand

}
.

Using the theory of Quot-schemes (see [FGA, Thm 3.1] for example) this
functor is easily seen to be representable by a projective Qp-scheme GrK0,i.
We let G = ResK0/Qp GLd act on GrK0,i in the following way: for a Qp-
scheme S, let A ∈ G(S) and E ∈ GrK0,i(S). We get a linear endomorphism
A of OS ⊗Qp V0 and define the action of A on E by

A · E = A((id⊗ϕ)(E)).
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Write
a : G×GrK0,i −→ GrK0,i

for this action and consider the subscheme Zi ⊂ G × GrK0,i defined by the
following fiber product:

Zi

��

// G×GrK0,i

a×id

��
GrK0,i

∆ // GrK0,i×GrK0,i .

An S-valued point x of the scheme Zi is a pair (gx, Ux), where gx ∈ G(S) is
a linear automorphism of OS ⊗Qp V0 and Ux is an OS ⊗Qp K0-submodule of
rank i stable under Φx = gx(id⊗ϕ). The scheme Zi is projective over G via
the first projection

pri : Zi −→ G.

Further we denote by fi ∈ Γ(Zi,OZi) the global section defined by

fi(gx, Ux) = det((gx(id⊗ϕ))f |Ux)

(recall f = [K0 : Qp]), where the determinant is the determinant as OZi-
modules. We also write fi for the global section on the associated adic space
Zad
i .

We write E for the pullback of the universal bundle on Zi to Zi × GrK,ν
and F• for the pullback of the universal filtration on GrK,ν . Then the fiber
product

G• = (E ⊗K0 K) ∩ F•

is a filtration of E⊗K0K by coherent sheaves. By the semi-continuity theorem
the function

hi : x 7−→
∑
j∈Z

j 1
ef dimκ(x) grj G•

is upper semi-continuous on Zi ×GrK,ν and hence so is

had
i : x 7−→

∑
j∈Z

j 1
ef dimk(x) grj (G•)ad.

For m ∈ Z we write Yi,m ⊂ Zi × GrK,ν (resp. Y ad
i,m ⊂ Zad

i × Grad
K,ν) for the

closed subscheme (resp. the closed adic subspace)

Yi,m = {y ∈ Zi ×GrK,ν | hi(y) ≥ m},

Y ad
i,m = {y ∈ Zad

i ×Grad
K,ν | had

i (y) ≥ m}.
Then the definitions imply that

pri,m : Yi,m −→ G×GrK,ν

pri,m : Y ad
i,m −→ (G×GrK,ν)ad

are proper morphism. Now

Si,m = {y = (gy, Uy,F•y ) ∈ Yi,m×(G×GrK,ν)α̃
−1(x) | vy(fi(gy, Uy)) > vy(p)

f2m}
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is a union of connected components of

Yi,m ×(G×GrK,ν) α̃
−1(x),

which can be seen as follows: Let λ1, . . . , λd denote the zeros of the polyno-
mial

Xd + c1X
d−1 + · · ·+ cd−1X + cd.

Then every possible value of the fi is a product of some of the λi and hence
fi can take only finitely many values.

We conclude that the subset
⋃
i,m pri,m(Si,m) is closed and claim that

α̃−1(x)wa =
(
α̃−1(x)\

⋃
i,m

pri,m(Si,m)
)ad

.

Indeed, let z = (gz,F•z ) ∈ α̃−1(x) ⊂ Gad ×Grad
K,ν . Then the object

(k(z)⊗ V0, gz(id⊗ϕ),F•z )

is not weakly admissible if and only if there exists a gz(id⊗ϕ)-stable subspace
Uz ⊂ k(z)⊗V0 of some rank, violating the weak admissibility condition. This
means z ∈

⋃
i,m pri,m(Si,m)ad. Here we implicitly use that fact that weak

admissibility is stable under extension of scalars (see Corollary 2.22).
�

Remark 4.2. In view of the period domains considered in [RZ] it can be
surprising that this weakly admissible locus is indeed the adification of a
scheme, not just an analytic space. The main reason is the following: In
[RZ] the isocrystal is fixed and the counter examples one has to exclude for
the weak admissibility condition are parametrized by the Qp-valued points
of an algebraic variety. In our setting the isocrystal is not fixed and the
Frobenius Φ may vary. Hence the set of counter examples is the algebraic
variety itself rather than its Qp-valued points.

Example 4.3. This example illustrates the difference with period spaces in
the sense of Rapoport-Zink. Let K = Qp and d = 2. We consider the
Frobenius Φ = diag(p, p) and fix the filtration F• such that

dimF i =


2 i ≤ 0

1 i = 1, 2

0 i ≥ 3.

In this case the flag variety GrK,ν is the projective line P1 and the period
space of [RZ] (or rather [DOR]) is the Drinfeld upper halfplane P1\P1(Qp)
which is not a scheme. On the other hand the weakly admissible set in the
sense discussed above is obviously empty.
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Corollary 4.4. Let x ∈ (A/W )ad
E and consider the 2-fiber product

α−1(x)wa //

��

Dwa
ν

��
x // (A/W )ad

E .

Then there exists an Artin stack in schemes A over the field k(x) such that

α−1(x)wa ∼= Aad

Proof. This is an immediate consequence of Theorem 4.1 �

We end the discussion of the fibers over the adjoint quotient by discussing
three examples.

Example 4.5. Let K = Qp and d = 3. We take Φ = diag(1, p, p2) and fix the
type of the filtration F• such that

dimF i =


3 i ≤ 0

2 i = 1

1 i = 2

0 i ≥ 3.

We write G = GL3 and B ⊂ G for the Borel subgroup of upper triangular
matrices. Further X = G/B is the full flag variety, and we are interested in
the weakly admissible locus in X. One easily checks that

Xwa = {F• ∈ X | F1 ∩ V1 = 0, and F2 6⊂ V12},
where 0 ⊂ V1 ⊂ V12 ⊂ Q3

p is the standard flag fixed by the Borel B. The
subset Xwa is obviously stable under B and, in fact,

Xwa = Bw0B/B,

where w0 is the longest Weyl group element. If x denotes the image of Φ in
the adjoint quotient, then Φ is a representative of the unique ϕ-conjugacy
class in G mapping to x and we further have α−1(x) = A\G/B and

α−1(x)wa = A\Bw0B/B.

Example 4.6. We use the same notations as in the example above, but this
time Φ = diag(1, 1, p3). Then

Xwa = {F• ∈ X | F1 ∩ V12 = 0}.
As dimV12 = dimF1 = 2 it follows that Xwa = ∅. In this case there is
a second ϕ-conjugacy class in G mapping to the same point in the adjoint
quotient as Φ. A representative of this second ϕ-conjugacy class is given by

Φ′ =

1 1 0
0 1 0
0 0 p3

 .
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Example 4.7. In this example let d = 2 and Φ = diag(1, p). Let K be a
ramified extension of Qp of degree e and consider flags of the type (1, . . . , 1),
i.e. the cocharacter is defined over Qp, the only non-trivial filtration step is
F1 = (F1

i )i=1...,e and the base change of the flag variety X = GrK,ν to K is

XK = P1
K × · · · × P1

K .

The weakly admissible locus in XK is given by

Xwa
K = {F• = (F•)i | F1

i 6=∞ for all i ∈ {1, . . . , e}}.
Let G = ResK/Qp GL2 and B ⊂ G the Weil-restriction of the Borel subgroup
of upper triangular matrices. Again we write w0 for the longest Weyl group
element of G. Then

Xwa = Bw0B/B ⊂ X = G/B.

If again x denotes the image of Φ in the adjoint quotient, then α−1(x) = A\X
and

α−1(x)wa = A\Bw0B/B.

5. Newton strata and weak admissibility

The proof of Theorem 4.1 suggests that the weakly admissible locus in the
fibers over a point in A/W does only depend on the valuation of the zeros of
the characteristic polynomial associated to the points of the adjoint quotient.
Hence we want to extend the result that the fibers over the adjoint quotient
are nice spaces to the pre-image of the Newton strata in the adjoint quotient.
Here we work in the category of analytic spaces in the sense of Berkovich
(see [Be]), as it is not obvious how to generalize the notion of Newton strata
(as defined in [Ko]) to adic spaces. Though the weakly admissible locus is
not a Berkovich space in general [He, Example 4.4], we show that it becomes
a Berkovich space, if we restrict ourselves to the pre-images of the Newton
strata. Further we want to identify the image of the weakly admissible locus
in the adjoint quotient with a (closed) Newton-stratum. As usual we will
write H (x) for the residue field at a point x in an analytic space and Xan

for the analytic space associated to a scheme X.

5.1. Newton strata. We first need to recall more notations from [Ko]. We
write a = X∗(A) ⊗Z R, and adom ⊂ a for the subset of dominant elements,
i.e the elements µ ∈ a such that 〈αi, µ〉 ≥ 0 for all i ∈ {1, . . . , d − 1}. For
c = (c1, . . . , cd) ∈ (A/W )an we write

(5.1) dc = (−vc(c1), . . . ,−vc(cd)) ∈ R̃d−1 × R,
where vc denotes the (additive) valuation on H (c) normalized by vc(p) = 1,
and R̃ = R ∪ {−∞}. Note that there is a sign in (5.1), as Kottwitz uses a
different sign convention. For a ∈ Aan define νa ∈ a by requiring

〈λ, νa〉 = −va(λ(a))
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for all λ ∈ X∗(A), where we write va for the (additive) valuation on H (a).
By [Ko, Proposition 1.4.1] there is a continuous map r : a→ adom mapping
x ∈ a to the dominant element with the smallest distance to x, and this
map extends in a continuous way to R̃d−1 × R. Here a ⊂ R̃d−1 × R via the
chosen identification X∗(A) = Zd. Then we find that r(dc(a)) is the unique
dominant element in the W -orbit of νa. This follows from [Ko, Theorem
1.5.1] for all a ∈ A(Q̄p) and, for an arbitrary point, from the fact that
A(Q̄p) is dense in Aan and the continuity of the construction. Note that
r(dc) = (−vc(λ1) ≥ · · · ≥ −vc(λd)) if the λi are the roots of the characteristic
polynomial associated to c and Kottwitz shows that this does only depend
on dc and not on c itself.

Definition 5.1. For µ ∈ adom we define

(A/W )µ = {c ∈ A/W | r(dc) = µ}
(A/W )≤µ = {c ∈ A/W | r(dc) ≤ µ}.

Here ” ≤ ” is the usual dominance order on dominant coweights. We will call
the first of these subsets the Newton stratum defined by µ and the second
the closed Newton stratum defined by µ.

We need another description of these sets to identify them as analytic
subspaces of the adjoint quotient.

Proposition 5.2. Let µ ∈ adom and Iµ = {i ∈ {1, . . . , d− 1} | 〈αi, µ〉 = 0}.
Then

(A/W )µ =

{
c = (c1 . . . , cd) ∈ (Ad−1 ×Gm)an

∣∣∣∣ vc(ci) ≥ −〈ωi, µ〉 , i ∈ Iµvc(ci) = −〈ωi, µ〉 , i /∈ Iµ

}
(A/W )≤µ =

{
c = (c1 . . . , cd) ∈ (Ad−1 ×Gm)an

∣∣∣∣ vc(ci) ≥ −〈ωi, µ〉 , i 6= d
vc(cd) = −〈ωd, µ〉.

}

Proof. For all points in (A/W )an(Q̄p) this follows from [Ko, Theorem 1.5.2].
Again the proposition follows from continuity, and the fact that the points
in (A/W )an(Q̄p) are dense in (A/W )an. �

The category of (strict) analytic spaces is a full subcategory of the category
of adic spaces locally of finite type, see [Hu3, 8.3] and the references cited
there. Hence we can restrict the stacks Dν and Dwa

ν to the category of
analytic spaces. We write again Dν and Dwa

ν for these restrictions. Further
we write α̃an (resp. αan) for the analytifications of the morphisms defined in
(4.2).

Theorem 5.3. Let ν be a cocharacter as in (3.1) and µ ∈ adom. Then
the weakly admissible locus in the inverse image (α̃an)−1((A/W )an

µ ) is an
analytic space.
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Proof. The proof is almost identical with the proof of Theorem 4.1. If we
replace Zi by

Z̃i = (Zi)
an ×(G×GrK,ν)an (α̃an)−1

(
(A/W )an

µ

)
and Yi,m by

Ỹi,m = Yi,m ×(G×GrK,ν)an (α̃an)−1
(
(A/W )an

µ

)
.

Here the functions fi are not locally constant on Z̃i and Ỹi,m, but their
valuations (or absolute values) are. As in the proof of Theorem 4.11 it
follows that

S̃i,m = {y = (gy, Uy,F•y ) ∈ Ỹi,m | |fi(gy, Uy)|y > |p|f
2m}

is a union of connected components of Ỹi,m and we use the properness of the
projection pri,m : Ỹi,m → (α̃an)−1

(
(A/W )an

µ

)
to conclude that

(α̃an)−1
(
(A/W )an

µ

)wa
= (α̃an)−1

(
(A/W )an

µ

)
\
⋃

pri,m(S̃i,m)

is an open subspace. �

5.2. The image of the weakly admissible locus. In this section we de-
termine the image of the weakly admissible locus under the map defined in
(4.1). In the case of a regular cocharacter ν it was shown by Breuil and
Schneider that the set of points a ∈ A such that there exists a weakly ad-
missible filtered ϕ-module (D,Φ,F•) with (Φf )ss = a is an affinoid domain,
see [BS, Proposition 3.2]. Here we extend this result to the general case
and give a description of this image purely in terms of the adjoint quotient
A/W . The difference with the description in [BS] is that we do not need to
fix an order of the eigenvalues corresponding to the order of their valuations.
We fix a coweight ν as in (3.1). This coweight determines the jumps of the
filtration F• on GrK,ν . After passing to Q̄p the filtration is given by

F• =
∏
ψ

F•ψ

where the product runs over all embeddings ψ : K ↪→ Q̄p.
We write {xψ,1 > xψ,2 > · · · > xψ,r} for the jumps of the filtration F•ψ, i.e.

griF•ψ 6= 0⇔ i ∈ {xψ,1, . . . , xψ,r}.

Further denote by nψ,i the rank of Fxψ,iψ and write

mψ,j(i) = max(0, nψ,j + i− d).

1Note that in this case this does not show that the weakly admissible locus is a scheme,
as our base is not a point but the Newton-stratum (A/W )anµ which is not a scheme.
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This is the minimal dimension of the intersection of Fxψ,jψ with a subspace
of dimension i. For i ∈ {0, . . . , d} define

(5.2) li =
∑
ψ

1
ef

r−1∑
j=1

(xψ,j − xψ,j+1)mψ,j(i) + xψ,rmψ,r(i)

 .

Definition 5.4. For a cocharacter ν and i ∈ {1, . . . , d} define li as in (5.2).
Define a rational dominant coweight µ(ν) ∈ adom by requiring that

1
f 〈ωi, µ(ν)〉 = −li for all i ∈ {1, . . . , d}.

The following result generalizes [BS, Proposition 3.2].

Theorem 5.5. Let ν be a cocharacter as in (3.1) and define µ(ν) as in
Definition 5.4. Let x ∈ (A/W )an, then (α̃an)−1(x)wa 6= ∅ if and only if
x ∈ (A/W )an

≤µ(ν).

Proof. Let c = (c1, . . . , cd) ∈ (A/W )an
≤µ(ν) and denote by λ1, . . . , λt the roots

of
Xd + c1X

d−1 + · · ·+ cd−1X + cd
with multiplicities mi in some finite extension L of H (c) containing K0. Let
D = L⊗Qp V0

∼=
∏d
i=1 L

d and

g = (id, . . . , id, A) ∈
f∏
i=1

GLd(L) ∼= G(L),

where A is a matrix consisting of t Jordan blocks of size mi with diagonal
entries λi. Now the pair (D,Φ) = (D, g(id⊗ϕ)) ∈ Isoc(k)L has the property
that there are only finitely many Φ-stable subobjects D′ ⊂ D. If D′ ⊂ D is
a rank i subobject then

tN (D′) := 1
f2
vp(det Φf |D′) = 1

f

t∑
j=1

m′jvp(λj)

for some multiplicities m′j , where we write vp for the additive valuation.

Write a = (λ
(m1)
1 , . . . , λ

(mt)
t ) ∈ Aan, then c(a) = c and r(dc(a)) ≤ µ(ν) by

assumption. It follows that

tN (D′) = 1
f vp(wωi(a)) = − 1

f 〈wωi, νa〉

= − 1
f 〈w

′ωi, r(dc(a))〉 ≥ − 1
f 〈ωi, r(dc(a))〉

≥ − 1
f 〈ωi, µ(ν)〉 = li.

for some w,w′ ∈W . Now for all Φ-stable D′ ⊂ D consider the open subset

UD′ ⊂ GrK,ν ⊗QpK0

of all filtrations F• such that dim(Fxψ,jψ ∩D′K) = max(0, nψ,j + i− d) for all
embeddings ψ. This is open as the right hand side is the minimal possible
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dimension of such an intersection. Since GrK,ν is geometrically irreducible
we find that the intersection

⋂
D′⊂D UD′ is non-empty and hence there exists

an F -valued point F• in this intersection, where F is some extension of L.
Now we have (D⊗K0 F,Φ⊗ id,F•) ∈ Fil Isoc(k)KF and this object is weakly
admissible since for all Φ-stable D′ ⊂ D we have

deg(D′) = li − tN (D′) ≤ 0

where i is the rank of the subobject D′ (and here we write the degree addi-
tively). Further, by the definition of g, we find that g maps to c under the
map α̃.

Conversely assume that c ∈ (A/W )an such that ∅ 6= α̃−1(c). Let (D,Φ,F•)
be an F -valued point of this fiber for some field F containing K0. Then
D decomposes into D1 × · · · × Df and we denote by µ1, . . . , µt the dis-
tinct eigenvalues of Φf |D1 and by di their multiplicities (as zeros of the
characteristic polynomial). We write (λ1, . . . , λd) = (µ

(d1)
1 , . . . , µ

(dt)
t ). Then

c = c(λ1, . . . λd) and we claim that

1
f

∑
j∈I

vp(λj) ≥ li

for all I ⊂ {1, . . . , d} with ]I = i. This claim clearly implies c ∈ (A/W )an
≤µ(ν).

Let I ⊂ {1, . . . , d} and write (λj)j∈I = (λ′1
(m1), . . . , λ′t

(mt)), where we assume
that the λ′j are pairwise distinct. Then

∑t
j=1mj = i = ]I. Using the Jordan

canonical form on easily sees that there exists a subobject D′ ⊂ D such that

(Φf |D′∩D1)ss = diag(λ′1
(m1)

, . . . λ′t
(mt))

and hence ∑
j≥1

mj
1
f vp(λ

′
j) ≥

∑
j∈Z

j 1
ef dim grj D

′
K ≥ li,

which yields the claim. �

We end by giving two examples of closed Newton strata in the adjoint
quotient.

Example 5.6. LetK = Qp and d = 3. We fix the cocharacter ν as in Example
4.5 and Example 4.6, i.e.

dimF i =


3 i ≤ 0

2 i = 1

1 i = 2

0 i ≥ 3.

One easily checks that l1 = 0, l2 = 1 and l3 = 3, i.e.

µ(ν) : t 7−→ diag(1, t−1, t−2).
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The image of the weakly admissible locus in the adjoint quotient is given by

(A/W )an
≤µ(ν) =

c = (c1, c2, c3) ∈ A2 ×Gm

∣∣∣∣∣∣
vc(c1) ≥ 0,
vc(c2) ≥ 1,
vc(c3) = 3.


If a = (a1, a2, a3) ∈ A with va(a1) ≤ va(a2) ≤ va(a3), then [BS, Proposition
3.2] says that there exists a weakly admissible filtered ϕ-module (D,Φ,F•)
with filtration of type ν such that Φss = a if and only if

0 ≤ va(a1)

1 ≤ va(a1) + va(a2)

3 = va(a1) + va(a2) + va(a3).

This is clearly equivalent to our condition in the adjoint quotient. This result
also explains Example 4.5 and Example 4.6.

Example 5.7. Again we let K = Qp and d = 3. Fix a cocharacter ν such
that

dimF i =


3 i ≤ 0

2 i = 1

0 i ≥ 2.

One easily checks that l1 = 0, l2 = 1 and l3 = 2, and the image of the weakly
admissible locus is

(A/W )an
≤µ(ν) =

c = (c1, c2, c3) ∈ A2 ×Gm

∣∣∣∣∣∣
vc(c1) ≥ 0,
vc(c2) ≥ 1,
vc(c3) = 2.


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