THE IMAGE OF THE COEFFICIENT SPACE IN THE
UNIVERSAL DEFORMATION SPACE OF A FLAT GALOIS
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EUGEN HELLMANN

ABSTRACT. The coefficient space is a kind of resolution of singularities of
the universal flat deformation space for a given Galois representation of some
local field. It parametrizes (in some sense) the finite flat models for the Galois
representation. The aim of this note is to determine the image of the coefficient
space in the universal deformation space.

1. INTRODUCTION

In the theory of deformations of Galois representations one is often interested in
a subfunctor of the universal deformation functor consisting of those deformations
that satisfy certain extra conditions, so called deformation conditions (cf. [Ma,
§23|). If we deal with a representation of the absolute Galois group of a finite
extension K of Q, in a finite dimensional vector space in characteristic p, there is
the deformation condition of being flat, which means that there is a finite flat group
scheme over the ring of integers of K such that the given Galois representation is
isomorphic to the action of the Galois group on the generic fiber. The structure of
the ring pro-representing this deformation functor is of interest for modularity lifting
theorems (see [Kil] for example). To get more information about this structure,
Kisin constructs some kind of "resolution of singularities" of the spectrum of the
flat deformation ring. This resolution is a scheme parametrizing modules with
additional structure that define possible extensions of the representation to a finite
flat group scheme over the ring of integers. In [PR2] Pappas and Rapoport globalize
Kisin’s construction and define a so called coefficient space parametrizing all Kisin
modules that give rise to the given representation.

Following the presentation in [PR2] we want to determine here the image of the
coefficient space in the universal deformation space. This question was raised by
Pappas and Rapoport in [PR2, 4.c| (see the remark right after Theorem 3.7 for
a more preceise comparison of our result with the question of [PR2]). Further
we show how to recover Kisin’s results from the more abstract setting in [PR2],
compare Remark 3.6. The main result of this note is as follows.

Let K be a finite extension of Q,, where p is an odd prime, and 5 : Gx — GL4(F)
be a continuous flat representation of the absolute Galois group G = Gal(K/K)
on some d-dimensional vector space over a finite field F of characteristic p. If
¢ : Gg — GL4(A) is a deformation of p, we write Ck (€) for the coefficient space
of (locally free) Kisin modules over Spec A that are related to the flat models for
the deformation £ (see also the definition below).

Theorem 1.1. Assume that the flat deformation functor of p is pro-representable
by a complete local noetherian ring RY. We write p : Gx — GLq(R%) for the
1
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universal flat deformation. Then the morphism Ck(p) — Spec R is topologically
surjective.

Corollary 1.2. If it exists, the flat deformation ring RY is topologically flat, i.e.
the generic fiber Spec R%[1/p] is dense in Spec RY.

If the ramification index of the local field K over Q, is smaller than p — 1, then this
implies the following result, already contained in [PR2]:

Corollary 1.3. Denote by e the ramification index of K over Q,. Assume that the
flat deformation functor of p is pro-representable and that e < p — 1. Then R" is
the scheme theoretic image of the coefficient space.

Acknowledgements: I want to thank G. Pappas and M. Rapoport for their com-
ments and remarks on a preliminary version of this note. Further I thank the
referee for his careful reading and his remarks. This work was supported by the
SFB/TR45 "Periods, Moduli Spaces and Arithmetic of Algebraic Varieties" of the
DFG (German Research Foundation).

2. NOTATIONS

Let p be an odd prime and K be a finite extension of Q, with ring of integers O,
uniformizer 7 € Ok and residue field k = Ok /7Ok. Denote by Ky the maximal
unramified extension of Q, in K and by W = W (k) its ring of integers, the ring
of Witt vectors with coefficients in k. We write E(u) € W/u] for the minimal
polynomial of 7 over K.

Fix an algebraic closure K of K and denote by Gx = Gal(K/K) the absolute
Galois group of K. Further we choose a compatible system m, of p”-th roots of
the uniformizer 7 in K and denote by K., the subfield | J K (7,) of K. We write
Gk, = Gal(K/K) for its absolute Galois group.

Let d > 0 be an integer and F a finite field of characteristic p. Let p : Gx — GL4(F)
be a continuous representation of Gx and denote by po = play_ . the restriction
of pto Gk, .

We consider the deformation functors Djp, Dg and D5, on local Artinian W (F)-
algebras with residue field F. For a local Artinian ring (A4, m) we have

D,(A) = equivalence classes of p : Gxg — GLg(A) such that
g B p mod m=p
equivalence classes of p : Gg_ — GLg(A) such that
p mod m = pg )

D5 (A) = {

where two lifts p;, po are said to be equivalent if they are conjugate under some
g € ker(GLg(A) — GL4(A/m)). The functor DY is the flat deformation functor of
Ramakrishna (cf. [Ram]), i.e. the subfunctor of D; consisting of all deformations
that are (isomorphic to) the generic fiber of some finite flat group scheme over
Spec Ok. Here "isomorphic to" means isomorphic as Z,[G k]|-modules, as the
action of the coefficients in the generic fiber does not need to extend to the group
scheme.

If Dj (resp. Dg) is pro-representable, the pro-representing ring will be denoted by

R (resp. R").
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Remark 2.1. Note that it is not clear whether Dj__ is representable, even if po is
absolutely irreducible, since Gi_, does not satisfy Mazur’s p-finiteness condition
(cf. [Ma, §1. Definition|). As there is an isomorphism

Gr.. = Gal(K/Ko) = Gal(k((w))*" /k((u))),

each open subgroup of finite index H C Gk _ is isomorphic to the absolute Galois
group of some local field in characteristic p,

H = Gal(I((t))**P/i((t))),

where [ is a finite extension of k£ and ¢ is an indeterminate. Hence by Artin-Schreier
theory (cf. [Se, X §3.a] for example), there is an isomorphism

Homeont (H, Z/pZ) = 1((1))/0(I((1))),

and the latter group is infinite.

If one restricts the attention to Gi__-representations of E-height < h , then the
deformation functor Dg:: is representable if Endp(poo) = F (see [Kim, Theorem
11.1.2]). The E-height of a p-torsion G __-representation is defined as the minimal
h such that the étale ¢-modules associated to the representation admits an W{[u]]-
lattice with cokernel of the linearisation of ® killed by E(u)" (see [Kim, Definition
5.2.8] for the precise definition).

As the deformation functor will not be pro-representable in the case of Gk _ -
representations, it will not be enough to consider the deformation functor, but we
really need to work with the deformation groupoid of ps,. That is the fpqc-stack
D, on local Artinian W (IF)-algebras with residue field F whose (A, m)-valued
points are given by the groupoid of deformations of p., to A, i.e.

9, (A) ={p: Gg = GLg(A) such that p mod m = p. }.

The morphisms of the groupoid ®;_ are all isomorphisms lifting the identity, i.e. a
morphism in ©,__ (A) is given by g-conjugation, where g € ker(GL4(A) — GL4(TF)).
As there can be non-trivial automorphisms we sometimes need to rigidify the situ-
ation. This is done by considering framed deformations, i.e. the groupoid

@Em (A) ={p: Gx — GL4(A) such that p mod m = p.},

where there are no non-trivial morphisms, i.e. all morphisms in the groupoid
@Em (A) are the identities.

Similarly we consider the framed deformation groupoid @E’ﬂ.

Recall that d > 0 denotes an integer and consider the following stacks on Z,-
algebras, defined in [PR2]. For a Z,-algebra R, write Ry for R ®z, W and
Ry [[u]] for the usual power series ring with coefficients in Ry,. Further Ry ((u)) =
Rw [[u]](u™!) denotes the Laurent series ring over Ry,. We denote by ¢ the endo-
morphism of Ry ((u)) that is the identity on R, the Frobenius on W and that maps
u to uP.

We define an fpgc-stack R on the category of Z,-schemes such that for a Z,-algebra
R the groupoid R(R) is the groupoid of pairs (M, ®), where M is an Ry ((u))-
module that is fpgc-locally on Spec R free of rank d as an Ry ((u))-module, and @
is an isomorphism ¢*M — M.

Further we define a stack C as follows. The R-valued points are pairs (9%, @), where
M is an Ryy[[u]]-module, fpgc-locally on Spec R free of rank d over Ry [[u]], and
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(M[1/u],®) € R(R). For m € Z consider the substacks C,, C C given by pairs
(M, @) satisfying

(2.1) u™IM C D(PH*M) C u” M.
For h € N we write Cj, i for the substack of C consisting of all (90, ®) satisfying
E(u)"Im C ®(¢*9M) C M.

Here E(u) € W{u] is the minimal polynomial of the uniformizer 7 € Ok over Kj.
In the following we will only consider the case h = 1 and just write Cx for C; k.
We will write Cx resp. R for the restrictions of the stacks Cy (resp. R) to the
category Nil,, of Z,-schemes on which p is locally nilpotent. See also [PR2, §2] for
the definitions.

The motivations for these definitions are the following equivalences of categories.

Proposition 2.2. Let A be a local Artin ring with residue field F a finite field of
characteristic p. Then the category of Gk -representations on free A-modules of

rank d is equivalent to the category of étale ¢-modules over (A®z, W)((u)) that are
free of rank d.

Theorem 2.3. There is an equivalence between the category of finite flat group
schemes G over Spec Ok and the category of pairs (MM, @), where M is a W[u]]-
module of projective dimension 1 and ® : M — M is a ¢-linear map such that
the cokernel of the linearisation of ® is killed by E(u). Under this equivalence the
restriction of the Tate twist of the G i -representation on Q(f() to Gk, corresponds
to the étale p-module (IMM[1/u], D).

The first equivalence is due to Fontaine, see [Fo]. The second one is a theorem of
Kisin for p > 3, see [Kil, §1] which was independently extended to the case p = 2
by Kim [Kim?2|, Liu [Liu] and Lau [Lau].

Further we will use the following notations: Let (A, m) be a complete, local noe-
therian W (F)-algebra such that p is nilpotent in A/m and £ : Spf A — R be an
A-valued point of R. Write &, for the reduction of ¢ modulo m™+!. By [PR2,
Corollary 2.6; 3.b] the fiber product

Spec(A/m™ ) xx Cx

is representable by a projective A/m"!-scheme Ck (&,) that is a closed subscheme
of some affine Grassmannian over Spec(A/m"*1) for all n > 0. These schemes
give rise to a formal scheme GK(g) over Spf A. Using the very ample line bundle
on the affine Grassmannian this formal scheme is algebraizable. The resulting
projective scheme over Spec A will be denoted by Ck (£). If A is a complete, local
Notherian ring with finite residue field, and if p is a deformation of a residual Galois
representation p to A and if we write £ : Spf A — R for the morphism induced by
plcy.. under the equivalence in Proposition 2.2, then we also write Cx (p) = Ck (&)
for the scheme constructed above.

Remark 2.4. Note that this does not give an arrow Ck () — Cx. For example the
module M = W[u]] together with the ¢-linear map ® given by ®(1) = E(u) does
not define a Z,-valued point of Cx but rather a "formal" point

Spf Z, — Ck.



THE IMAGE OF THE COEFFICIENT SPACE 5

However if B is some Z,-algebra killed by some power of p, then
E(u) € (B&z,W((v)))*,

and hence any locally free B®z, W [[u]]-modules 9t with semi-linear map ® satis-
fying

E(u) C O(op™M) C M
defines a B-valued point of Ck.

3. THE IMAGE OF THE COEFFICIENT SPACE

In the following we will assume that the representation p is flat (i.e. is the generic
fiber of some finite flat group scheme over Spec O ) and that Dg is representable.
This is the case if, for example, Endp(p) = F (cf. [Co, Theorem 2.3]). We write p
for the universal flat deformation.

By Proposition 2.2 we have a map
(3.1) 9, — R

of stacks on local Artinian W (F)-algebras with residue field T, see also [PR2, 4.a]
and [Kil, 1.2.6, 1.2.7]. Note that this map only exists if we use the deformation
groupoid instead of the deformation functor, as the deformation functor is not
pro-representable.

For some local Artinian ring A and some §{ € ©;_(A) we write M (&) € R(A) for

~

the corresponding ®-module. More precisely, this map identifies D5 with R(5_)

(cf. [PR2, 4.a]). The latter fibered category is given by all deformations in R of
the ®-module M (poo). Especially we find that the map in (3.1) is formally smooth

and hence so it the morphism ”Dp‘;'m —R.

Lemma 3.1. Write for the moment GK for the 2-fiber product of CAK and @g over
R. Composing the canonical projection éK — 33% with the morphism 33% — Dp.
obtained by restriction to Gi_, we obtain a 2-cartesian diagram of stacks on local
Artinian W (F)-algebras with residue field F:

GK Hé\K

|

o, — R

The same conclusion also holds true if CDE and D, are replaced by @E’ﬂ and @'p;'oo,
respectively.

Proof. Let A be a local Artinian W (F)-algebra such that p” A = 0 for some n > 0.
We have to show that there is a natural equivalence of categories

(O, @), &, ) with (M, P) € Ck(A) , £ €Dy (A) }
and an isomorphism « : (M[1], ®) — M (€) ’

u

(32)  Ck(A) — {
where
(M, @), p', B) with (M, P) € Cx(A)

Ck(A) = a flat lift p’ € @%(A) of p
and an isomorphism S : (M[], ®) — M(p/|c,_)
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First it is clear that ®% — ©;_ induces the natural map in 3.2. This map is
fully faithful, as the restriction to G, is fully faithful on the category of flat p-
power torsion representations by [Br, Theorem 3.4.3]. We have to show that it is
essentially surjective.
Let x = (9, @), &, «) be an A-valued point of the right hand side.
Then (M, @) € Cx(A) and by Theorem 2.3 there is an associated flat representation
gof Gk such that _

B (M[1/u], @) = M(flg,.)-

This shows that y = (9, ®), &, B) defines a unique point in C (A). It follows from
the construction that this point maps to x. (Il

Recall that R pro-represents the flat deformation functor with universal repre-
sentation p. We denote by RPfl and pY the corresponding objects for framed
deformations.

Proposition 3.2. Let CK(pD) denote the projective RO -scheme obtained from
aK(pD) by algebraization.
(i) The generic fiber C (p") @w @ W (F)[L/p] is reduced, normal and Cohen-
Macaulay.
(ii) The reduced subscheme underlying the special fiber C'(p) ®w e F is nor-
mal and with at most rational singularities.
(iii) The scheme Ci (p") is topologically flat, i.e. its generic fiber is dense.

Proof. This is similar to [Kil, Proposition 2.4.6].

Denote by y : Spec F — R the F-valued point defined by po,. Let = be a closed point
of Ok (p7). Extending scalars if necessary, we may assume that z is defined over F.
Denote by (Mp, @) € R(F) the ®-module defined by y and by (Mg, Pg) € Cx (F)
the ®-module defined by z. We want to compare the structure of the local ring
Ocy(p0),2 (resp. its completion) to the structure of a local model My defined in
[PR2, 3.a]. By loc. cit. Theorem 0.1. there is a "local model"-diagram of stacks
on the category Nil,

(3.3) / X
6[( —Z/M\K7
with 7 and ¢ formally smooth. Here the B-valued points of the stack Cx are the
®-modules (M, @) € Cx(B) together with an isomorphism 9 — (B®z, W{[u]])?,
for a Zy-algebra B.
We consider the following groupoids on local Artinian W (F)-algebras: Denote by
D, and D, the groupoids
9,(B) = (9, @) € Cx(B) equipped with an isomorphism
v Tl Mep (B/mp),?®id) 2 (M @ (B/mp), Py ®id) [’
9,(B) = (M, ®) € R(B) equipped with an isomorphism
v - (M ®p (B/mp),?®id) = (M ®p (B/mpg), Py ®1id)

Fixing a basis of MMy we may view z as an F-valued point of Cx. Denote by D, the
groupoid of deformations of z in Ck.
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Under the morphism ¢ in (3.3), the point  maps to a point Z of Mg . This point
defines an F ®z, Og-submodule L C (F ®z, Ox)?%. Let D; be the groupoid of
deformations of Z, i.e.

D3(B) = {B®z, O —submodules £ C (B®z,0k)? | L&p(B/mp) = Lop(B/mp)}.

This groupoid is pro-represented by the completion of the local ring Oy, z. Now
we have the following commutative diagram

o
/ X
Spf O ¢
pf OCK(pD),x @x @(j
R

D oy,

where the lower left square is cartesian by Lemma 3.1. As remarked above & is
formally smooth and hence so is £’. As D; is pro-represented by the complete local
ring at some closed point of the local model Mg and as £/, m and ¢ are formally
smooth, the assertion of the Proposition is true if it is true for My . But if follows
from the definitions (using the notation of [PR2, 3.c|) that

(3.4) Mg Sz, Qp = HMIIL(;?K ®z, va
i
for some cocharacters

i+ Gy g, — (Reskjq, GLd)g, = H GLag,
1,[1:K—>@p

@Z = @ V:jw
ne{0,1}
where V,;bl ={v e Q¥ | (pry o pi)(a)v = a™v for all a € Q' } and each of the M}ZCK
is a local model in the sense of [PR1]| (compare [PR2, Remark 3.3]). Hence, by
[PR1, Theorem 5.4], the generic fiber of the local model My ®z, Q, is normal,
reduced and Cohen-Macaulay. The special fiber decomposes as follows:

(3.5) My ®z, Fp = [ M%) x @2, F,

Hmax

such that

v

where v runs over cocharacters

Gm,@,, — (ResK/Qme)@p,
and where fiax(v) is the maximal dominant cocharacter G,,, — Resg /0, GLd (for
the dominance order) such that the composition

G,.g, — (Resx /g, GLa)g, 4 (Resk g, Gm)g

P

equals v. The decomposition in (3.5) runs over all cocharacters v such that the

local model ML‘:&X(V) x 1s non-empty. Further we have u; = Lmax (V) for some

cocharacter v;. It follows that every connected component of the special fiber is the



8 E. HELLMANN

special fiber of a local model appearing in the decomposition of the generic fiber
(3.4). Now the claim again follows from [PR1, Theorem 5.4]. O

Remark 3.3. We need to formulate the result on the local structure of the special
fiber as a result about the underlying reduced scheme as the local models M }f‘;{ are
in general not defined over Z, but over a ramified extension and hence there are
nilpotent elements in the special fiber Mk ®z, F,. However, the local structure of
the special fiber is not needed in the sequel. We make only use of the fact that the

gneric fiber is dense.

Proposition 3.4. The map Cx (p7) — Spec RP! becomes an isomorphism in the
generic fiber over W (), i.e.

Cic(p7) @w ) Frac(W (F)) — Spec(RMA[L]).

Proof. Using the result on the local structure of C’K(p‘:'), the proof is the same as
in [Kil, Proposition 2.4.8]. The main point is to check that the map is a bijection
on points. O

Corollary 3.5. The map Ck (p) — Spec R becomes an isomorphism in the generic
fiber. Further the generic fiber of Ck(p) is dense in Ck(p).

Proof. This is an obvious consequence of the statements on C'x (p"). g

Remark 3.6. As a consequence of the above we recover Kisin’s result on the compar-
ison of the connected components of the generic fiber of Spec R with the connected
components of a scheme in characteristic p from the more abstract set up in [PR2].
More precisely, let
w: Gy, g, — (Reskq,GLa)g,

be a miniscule cocharacter which is dominant with respect to the Borel subgroup
that is the Weil restriction of the upper triangular matrices. We write Spec R%#* for
the flat closure of the union of the connected components of Spec R[1/p] where the
Hodge-Tate weights of the universal flat representations are given by p (compare
[He, 5] for the definition). We define a (dominant) cocharacter

v Gm’pr — (Resk/FpGLd)]Fp
as follows. Let
fyp : t — diag(t, o)

denote the component of y corresponding to an embedding ¢ : K < Qp. Then the
component of v corresponding to 9 : kK — F,, is given by

vyt — diag(t2vmed n=i ¥ 2umod =i bv)

If one defines a closed subscheme C,(p) C Ck(p) as the variety of all lattices 91
such that the elementary divisors of E(u)0t C 9 are given by v, then the proofs
of Proposition 3.2 and [Kil, Corollary 2.4.10] show that there is a bijection!

mo(Spec R [1/p]) = mo(C(p)).

1Actually rewriting Kisin’s arguments in this context would yield a bijection
mo(Spec RP1[1/p]) = 7m(Cy(p9)). However, this bijection is of course equivalent to the
one above.
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In fact this bijection is Kisin’s motivation to study the morphism Cx (p) — Spec R1.
In the 2-dimensional case the connected components of the variety C,(p) can be
computed in many cases.

Theorem 3.7. Suppose that the universal flat deformation ring R of p exists and
denote by p the universal flat deformation. Then the morphism Ck(p) — Spec R"
is topologically surjective.

We will prove this theorem in section 4 below. The theorem gives a partial answer
to a question raised in [PR2, 4.c]. In loc. cit. Pappas and Rapoport make the
following construction. If A is a complete local Noetherian ring with finite residue
field F and if p is a deformation of a residual G k-representation p over F to A, they
define a quotient A" — AX as the scheme theoretic image of the morphism

Ck(p) — Spec A

They show that the map A? — AK is an isomorphism if [K : K] < p — 1, and ask
whether it is an isomorphism in general. Our main result gives a partial answer
to this question in the sense that, if A = Rf is the universal flat deformation ring,
then the induced map Spec RX — Spec R is an isomorphism on the level of points,
i.e. the reduced rings

(Rﬂ)red N (RK)red
are equal.
We will conclude this section with some consequences of Theorem 3.7.

Corollary 3.8. Assume that R exists, then Spec R is topologically flat.
Proof. This follows from Theorem 3.7 and the corresponding result on Ck (p). O

Proposition 3.9. Assume that the universal deformation ring R of p exists with
universal deformation p"™V. Then Cr(p™V) — Spec R factors over Spec R and
is (canonically) isomorphic to Ck(p).

Proof. For n > 0 denote by p, : Spec(Rﬁ/mZ{gl) — R the reduction of plg,__
modulo mggl, and similarly (p"™V),. We consider the following diagram with all

rectangles cartesian.

Cr (pn) Cr(pp™) —————=Cx

i i N
R

Spec(Rﬂ/m%ﬁl) ———— Spec(R/m'y"") R.

Pn

By [PR2, Proposition 4.3] the morphism Cg (p2™V) — Spec(R/m’s™) factors over
Spec(Rﬁ/mTéﬁl) and hence Ck (pn) — Cik (p'™1") is an isomorphism.

As Spf R — Spf R is a closed immersion the formal scheme CA’K(p) is a projective
formal Spf R-scheme and applying formal GAGA (see [EGA3, 5.4|) over Spf R
we find that also the algebraizations Ck(p) and Ck(p"™"V) are isomorphic over

Spec R. O
Proposition 3.10. Assume that e = [K : Ko| < p — 1. Then the morphism
Ck(p) — Spec R

is an isomorphism.
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Proof. Tt is enough to show that 6;((,0) — Spf R" is an isomorphism. We show
that both objects pro-represent the same functor, i.e. 6;((,0) pro-represents the
deformation functor Dg. This is already contained in [PR2, Remark 4.4, Proposition
4.5]. We repeat the argument here. Let A be a local Artinian ring and £ € Dg(A)
a flat deformation of p. By a result of Raynaud (cf. [Ra, Proposition 3.3.2])
there is a unique flat model for this deformation. Denote by (90, @) the W{[u]]-
module associated with this group scheme by Kisin’s classification. This is a W{[u]]-
submodule of the étale ¢-module (M, ®) over Ay ((u)) corresponding to the (twist
of) the restriction of € to Gx_ . As the module 9 is the unique W[u]]-submodule
of M satsfying
E(u)M C ®(¢™M) C M

it has to equal its Ay [[u]]-span inside M. As 9t is unique one easily sees that MR 4 F
equals the image of M in M ® 4 F and hence is free of rank d over Fyy [[u]]. Tt follows
from [PR2, Lemma 4.2] that 9t is free over Ayy[[u]]. This defines the unique point
in Cx(A) above £. We have shown that the functor morphism éK(p) — Dg is
bijective on A-valued points. The claim follows. O

4. PROOF OF THEOREM 3.7

In this section we prove the main result, Theorem 3.7.

Let e = [K : Ky denote the ramification index of K over Q,. Then the degree of
the Eisenstein polynomial E(u) is e and its reduction modulo p is u® € k[u].

For the rest of the section we denote by O = l[[w]] a complete discrete valuation
ring in characteristic p with finite residue field ! containing k. We will use the
notation A,, = Op/(@w"**)®py, k. For aring R and a free R((u))-module R((u))?, a
finitely generated projective R[[u]]-submodule that generates R((u))? will be called
a lattice in R((u))®.

Finally, we will write Op{{u}} for the w-adic completion of Op((u)) and similarly
(OF ®r, k){{u}} for the w-adic completion of (O ®r, k)((u)).

Lemma 4.1. Let (M,®) € R(Op/(w"™)) and M C M a finitely generated
Ap[[u]]-submodule such that M[1/u] = M and

u®M C (™M) C M.

Then the l-dimension of the u-torsion part of the finitely generated l[[u]]-module
M/wM is bounded by

dimy (9 /9N < [k : Fpld-=<

p—1"

Proof. We can describe the u-torsion as follows.
There is a filtration F° > F! > -+ D F*F!l =0 of M/wM such that

FUFH = MmMno'M)/(eMNoo' M+ M0 M).

Here F°/F! is the free part in the quotient 90t/cwM and F*¢/Fi*! is the image of
the contribution of the elements in 9 N (w!M\w' ™ M) to the u-torsion. Further
foriel,...,n—1 we have

dim; (M N ' M) /(w9 + M N T M)
+dimy (M N M) /(@M N ™M+ MN o2 M)
=dim;(M N M) /(@ TIM + M N2 M).
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This can be seen using the interpretation of dim;(MMNw M) /(= M+ MNww' 1 M)
as the sum of all elementary divisors of the lattice (M Nw'M)/(MN w1 M) with
respect to @M/ (MM L M) as [[[u]]-lattices in ' M /w1 M and the fact that the
multiplication by @ induces isomorphisms from @M /@M to w1 M /w2 M
for i <n — 1. Now we find that

dim; (9 /o)™ = dimy (M N " M) /" IM.

The Lemma now follows from the following claim:
WP (M N @ M) © wm.
We denote by j the minimal integer such that v/ (9 N ww"M) C w"IN.
Then pj is the minimal integer r such that u"®(¢p*(MNw™M)) C w"P(¢*M). But
we have
@"®(¢*M) D uw"M D uTI(MN " M) D uP(¢* (M N " M)).
Hence pj < e + j and the claim follows. O

Lemma 4.2. Let (M,®) € R(Op/(w™)). Then there are at most finitely many
finitely generated Ay[[u]]-submodules MM C M such that M[1/u] = M and

UM C D(H*M) C M.

Proof. The module M is a nd[k : Fp]-dimensional [((u)) vector space. Every finitely
generated A,[[u]] submodule 9 C M with 9M[1/u] = M is an [[[u]]-lattice in M.
Hence the argument of [Kil, Proposition 2.1.7] shows that there exists a lattice
My C M and integers 41,42 € Z such that all 9t C M satisfying the properties of
the Lemma satisfy

w1 My C M C ub2IMy.
These are only finitely many lattices. ([

We will use the following notation: If Spf Op — R is a formal point defined by
(M,,, ®,,) : Spec(Op/w"™t1) — R, we denote this point by (M, ®) and view this as
the ¢-module

o~

M = lim M,
—
over (Of ®r, k){{u}}.
Proposition 4.3. Let (J\/Z,&;) be a point Spf Op — R and denote by (M, D)
the reduction modulo w"*!, i.e. the ¢p-module defined by Spec Op/w"™t — R.
Assume that there exist finitely generated Ay[[u]] submodules M, C M,, such that
M, [1/u] = M,, and
u*M,, C @, (¢"M,,) C M,,.
Then there exists (M, ®) € R(Of) such that
(M/w" ™ M, ® mod w"*) = (M,,®,).
Proof. We denote by Z,, the set of all finitely generated A, [[u]]-submodules 9t C M,
such that M[1/u] = M,, and
u*N C D, (™M) C N.

By assumption these sets are non empty and by Lemma 4.2 they are finite. Further
if 91 € M,, and m < n, then the image of 91 under the map

M, — M,,
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defines an element of Z,,, denoted by fnn(91). As the sets Z; are non empty and
finite we can inductively construct a sequence 9M,, € Z,, such that fy,,, (M) = M,,

for m < n. We denote this sequence again by 9, instead of 91,,.

By Lemma 4.1 there are only finitely many possibilities for the isomorphism class
of the u-torsion in M, /wM,. Hence there exists a strictly increasing sequence
n; € N such that

(4.1) M,,, /@My, —> M, [wIMN,,,
for j < i € N. Now there is an isomorphism
M,,, /™I, = M, @ (M,,, o™ L, ) ters,
where the last summand is the u-torsion part of the left hand side. We find that
(D, /My, )" = (M, My, ) B (D, /0™ M, ) ) f 0
Using (4.1) and Nakayama’s Lemma it follows that

mni/wnj-i-lmm —_ s m'ﬂj

for all j < i. Especially there is an r € N (independent of i) and generators
bgl), b of M, as an A, [[u]]-module such that the b reduce to by modulo
()

w1 for all j < i. Choosing a compatible expression of ®,,(b;

;) in terms of the

b;i) we can define commutative diagrams for j < i:

|

(An; [[u]]", @n;) —— (M, o)),
where all arrows are surjective. In the limit we get morphisms

(OF ®s, B)[[u]]",®)

o |~

M = lim(Ay, ()", ®y,) —> (M, D).
pu.
Here the lower arrow is surjective by the Mittag-Lefller criterion: The modules in
question have finite length. Note that we do not claim that the linearisation of ®
is an isomorphism after inverting w.
Now the image of the vertical arrow defines (after inverting u) a free (Op @rk)((u))-

submodule N of the (O ®r, k){{u}}-module M such that
N ®0F((U)) OF{{’LL}} — > M.

The image of N under M — M defines a finitely generated (OF ®r, k)((u)) sub-
module N such that
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The surjectivity follows from the discussion above, and injectivity can be shown as
follows: Let (M, )nen be a system of free A, [[u]]-submodules of M,, such that

N, /"Ny, = Ny

for all n > 1, and such that 2,,, C N, for all &. Then McN:= lim,. 91;, where
M is the image of the diagonal arrow in (4.2). Now Op{{u}} is flat over Op[[u]],

as it is the w-adic completion of the Noetherian and flat Op[[u]]-algebra O ((u)).
It follows that

N ®op () Or{{ut} = M@0, u) Or{{ut} = N0, Or{{ut} = M.

Further N is ®-stable by construction. We claim that N is free.
As k C I we have isomorphisms

And hence M = M®0) x M(9%0) x ... x M (@' ~"%0) where g is a fixed embedding,
¢ is the absolute Frobenius on k and f = [k : F,]. The endomorphism ® maps
M©@'0) to M(@"7%0) | As N is D-stable we find that N = N®0) x ... x N(@' "0,
where N(¢'%0) is a finitely generated O ((u))-submodule of M(#"0) that generates
M(@"%0) over Op{{u}} and hence is free of rank d, as Op((u)) is a principal ideal
domain.

Now (N, ®) is the object claimed in the Proposition: It follows from the construction
that (N, ®) reduces to (M,,, ®,,) modulo @ and hence it follows from Nakayama’s
lemma that the linearisation of ® is invertible on N. g

Before we continue we want to remind the reader that not every A, [[u]]-submodule
M, C M, satisfying u®M,, C ®,(¢*M,,) C M,, defines an O /" -valued point
of Cx. This is only the case if M1, is a free A,[[u]]-module.

Proposition 4.4. Let (M,®) € R(OF) and denote by (M, ®,) € R(Op/ww" 1)
the reduction modulo w™t. Assume that there exist finitely generated Ap,[[u]]-
submodules M, C M,, such that M, [1/u] = M, and

u*M,, C D, (¢*M,,) C M,,.
Then there exists the diagonal arrow in the diagram
Ck
Spec Op ——R.

Proof. Consider the free (F ®p, k)((u))-module M ®¢,.(w)) F((u)). We choose

an (F ®p, k)[[u]]-lattice NcM ®0p((w)) F((u)). As the linearisation of ® is an
isomorphism, there exist r € N such that

uN C B(*N) Cu "N,

i.e. Mis an F-valued point of the stack C, defined in (2.1).
By [PR2, Corollary 2.6] and the valuative criterion of properness, the diagonal
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arrow in the diagram below exists,

Spec FF ——C,

| ]

Spec O ——=R.

This means that N extends to an (Op ®r, k)[[u]]-lattice N such that
u'NC (™M) Cu "N

We denote by 0, the reduction of 9 modulo w™*1.
By assumption there are finitely generated A, [[u]]-submodules 9,, C M,, such that
M, [1/u] = M,, and
u*M, C D, (¢*M,,) C M,,.

By the same argument as in the proof of Proposition 4.3 we can assume that 9,
maps onto 9,1 under the projection M, — M, 1 for all n. Now the argument
of [Kil, Proposition 2.1.7] shows that there is an integer s only depending on r and
e such that

u’MN, C M, Cu °*N,.
If we write 9 for liin I, then this shows

uNMN C M Cu N

Hence 9 is finitely generated over O[[u]] and contains an (Or ®r, k)((u))-basis
of M. Further it still satisfies u“9 C ®(¢*M) C M and M Qo () F[[u]] is free
over (F' ®p, k)[[u]]: As (F ®F, k)[[u]] is a product of principal ideal domains and
M @0 (1)) F[[u]] has no u-torsion it has to be a product of free F[[u]]-modules, all
of which have the same rank, as ® permutes these factors and is an isomorphism
after inverting u. Hence we obtain the following commutative diagram

Spec F ——C},

L

Spec O —— R,

where Cj; = Ck Xgpec 2, Spec Z/pZ is the reduction of Cx modulo p (compare [PR2,
3.b.]). By loc. cit. the stack Cj is a closed substack of C} = C. Xgpec z, Spec Z/pZ.
Using the valuative criterion of properness again we obtain the desired arrow. [

Proof of Theorem 3.7. By Corollary 3.5 the morphism Cx(p) — Spec R is an
isomorphism in the generic fiber over W (F). Especially it is surjective.

We write C i (p) = Ck (p) @w () F for the special fiber of Cx (p) and R for RY/pRY.

—A
Let n be a point of R that is not the unique closed point xg. We mark the
specialization 7 ~ x¢ by a morphism

Spec O — Spec Eﬂ,

where Spec O is a complete discrete valuation ring and where the morphism maps
the generic point of Spec OF to 1 and the special point to zg. As Ck(p) — Spec R
is proper, the image is closed and, by a Zariski density argument, it suffices to
consider the case where n is a height 1 prime ideal. Hence we may assume that
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Op has residue field F (recall that R is a quotient of a power series ring in finitely
many variables over W (FF)). Let us write F’ for the composition field of F and k
and Art’ for the category of local Artinian W (F’)-modules with residue field F'.
Further we write B = R ®@rF and O = O ®p F’. Then R isa complete local
Noetherian ring with residue field F’ and Ops is a complete discrete valuation ring
with residue field F’. Let p’ denote the representation

p G — GLd(R/)

obtained by composing (p mod p) with the inclusion R" - R and write pr, for the
restriction of o' = p’ @z F' = p@pF’ to Gk, . It is obvious that the representation
p' is flat, as p is flat, and that the representations on GL4(Op /™) induced
by Spec Op/ — Spec R are flat as well, as they are scalar extensions of flat
representations with coefficents in Op /" *!. Now

(4.3) Spf Opr — Spf B — D51

is a morphism of stacks on Art’ and induces modules (M,,, ®,,) € R(Op/ /" t1). By
Kisin’s classification of finite flat group schemes (Theorem 2.3), there exist finitely
generated k[[u]]-submodules 9,, C M,, such that 9, [1/u] = M,, and

UM, C O, (¢*M,) C M.

Replacing 90, by the (Op /@™t @, k)[[u]]-modules that it generates, we may
assume that 90, is stable under the action of O/ /w"*l. By Proposition 4.3
the arrow Spf Op — R is algebraizable to a morphism Spec Op» — R and by
Proposition 4.4 we obtain a commutative diagram:

Ck

]

Spec Opr —— R.

We have to show that the arrow Spf O — D induced by restricting the lower

vertical arrow in this diagram to Art’ factors over R and that this morphism
coincides with the arrow in (4.3).

By Theorem 2.3 we obtain from the morphisms Spec Op /w" ! — Cx flat G-
representations such that the restriction to Gg_ induces the objects (M, ®,)
under the morphism (3.1). By [Br, Theorem 3.4.3] the restriction to Gk is fully
faithful on the category of flat p-torsion G i-representations and hence the Galois
representation obtained from these group schemes coincides the one obtained from
the morphism Spf Op/ — Spf . We have shown that the image of the morphism

Cx(p') — Spec B
contains the image of Spec O/ — Spec R which is enough to proof the claim. [
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