
CONNECTEDNESS OF KISIN VARIETIES FOR GL2

EUGEN HELLMANN

Abstract. We show that the Kisin varieties associated to simple ϕ-
modules of rank 2 are connected in the case of an arbitrary cocharacter.
This proves that the connected components of the generic fiber of the flat
deformation ring of an irreducible 2-dimensional Galois representation
of a local field are precisely the components where the multiplicities of
the Hodge-Tate weights are fixed.

1. Introduction

In his paper [Ki], Kisin constructs a projective scheme over a finite field
of characteristic p whose closed points parametrize the extensions of a fixed
Galois representation of a local p-adic field K in a vector space over a finite
field F of characteristic p to a finite flat group scheme over the ring of in-
tegers OK of K. In [PR], Pappas and Rapoport name these varieties Kisin
varieties. Kisin shows that the connected components of this scheme are
in bijection with the connected components of the generic fiber of the flat
deformation ring of the fixed representation in the sense of Ramakrishna (cf.
[Ram]). The quotient of the flat deformation ring corresponding to those
flat representations whose Hodge-Tate weights 0 and 1 have the same mul-
tiplicity is of particular interest for modularity lifting theorems (see [Ki]).
In the case where K is totally ramified over Qp and the Galois representa-
tion is 2-dimensional, the connected components of the corresponding variety
over Fp were determined by Kisin in [Ki, 2.5]. In general Kisin conjectures
that the connected components are given by open and closed subschemes on
which the rank of the maximal multiplicative subobject and the maximal
étale quotient are fixed, see [Ki, 2.4.16]. Kisin’s connectedness result was
generalized by Gee and Imai to the case of an arbitrary local field K (again
in the 2-dimensional case), see [Gee] and [Im1], but their results again only
concern the case corresponding to deformations whose Hodge-Tate weights
0 and 1 (in the generic fiber) have the same multiplicity. In [Im2] and [Im3],
Imai also determines the type of the zeta function of the Kisin variety in
these cases and counts the points of the variety parametrising extensions of
the trivial representation. In the case of low ramification (more precisely
if the ramification index of K is smaller than p − 1), the scheme is either
empty or contains a single point, by Raynaud’s theorem [Ra, 2.2.3, 3.3.2].
In this paper we prove connectedness of the Kisin variety corresponding to
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arbitrary Hodge-Tate weights in the case of an irreducible Galois represen-
tation of dimension 2. This generalises our result in [He], that the Kisin
variety for arbitrary Hodge-Tate weights is geometrically connected if the
representation is absolutely irreducible and K is totally ramified.

We now describe our main result. Let K be a finite extension of Qp with
residue field k. Fix a uniformizer π and a compatible system of pn-th roots
πn of π in a fixed algebraic closure K̄ of K. We denote by K∞ the subfield
of K̄ obtained from K by adjoining πn for all n. Then the absolute Galois
group GK∞ of K∞ is isomorphic to the absolute Galois group of a local
field in characteristic p and hence the F-linear representations of GK∞ are
described in terms of étale ϕ-modules over (k ⊗Fp F)((u)) (or equivalently
ϕn-modules over F((u)) if k ⊂ F and n = [k : Fp]), where F is a finite field of
characteristic p, compare [Fo, A]. Here the Frobenius ϕ acts on (k⊗FpF)((u))
as the p-power map on k((u)) and as the identity on F.

Assume that p ≥ 3. By a result of Kisin (building on work of Breuil), the
finite flat group schemes over SpecOK that are p-torsion are described in
terms of free k[[u]]-modules M together with a ϕ-linear injection Φ : M→M
such that ueM ⊂ Φ(ϕ∗M). Here e = [K : W (k)[1/p]] is the ramification
index of K over Qp. Under this equivalence of categories, the restriction to
GK∞ of the Galois representation in the generic fiber corresponds up to twist
to the étale ϕ-module obtained from (M,Φ) by inverting u. More precisely,
let G → SpecOK be the finite flat group scheme defined by (M,Φ). We write
V = G(K̄) for the Galois representation on the generic fiber and assume that
V carries an action of F. Then (M[1/u],Φ) is the étale ϕ-module associated
to V (1)|GK∞ .

Conversely let us fix a free (F⊗Fp k)((u)) module N of rank d together with
an isomorphism Φ : ϕ∗N → N . Kisin shows that there is a closed subvariety
CK(Φ) of the affine Grassmannian of the algebraic group G = Resk/Fp GLd
such that the F′-valued points of CK(Φ) are the (F′⊗Fp k)[[u]]-lattices M′ ⊂
N⊗̂FF′ satisfying

ueM′ ⊂ Φ(ϕ∗M′) ⊂M′.

As the restriction of flat p-torsion representations of GK = Gal(K̄/K) to
GK∞ is fully faithful [Br, Theorem 3.4.3], this scheme indeed parametrises
finite flat group scheme models of a given GK-representation.

If we fix a dominant cocharacter of the group G, then we can ask for the
closed subscheme Cν(Φ) of the affine Grassmannian parametrising lattices
M such that the elementary divisors of Φ(ϕ∗M) with respect to M are less or
equal to ν in the usual order on dominant coweights (see also the definitions
below). In this context p = 2 is also allowed. We will prove the following
Theorem.

Theorem 1.1. Fix a dominant cocharacter ν and a simple 2-dimensional
étale ϕ-module (N,Φ). Then the scheme Cν(Φ) is geometrically connected.
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We believe that Cν(Φ) is in fact irreducible and hope to come back to this
question and also to discuss some of the structure of Cν(Φ).

Now let p ≥ 3 and let ρ̄ : GK → GL2(F) be an irreducible continuous
representation of GK with coefficients in a finite extension F of Fp. Then the
flat deformation functor is pro-representable by a complete local noetherian
W (F)-algebra Rfl. Let

µ : Gm,Q̄p −→ (ResK/Qp GL2)Q̄p

be a miniscule dominant cocharacter and write Rfl,µ for the quotient of
Rfl[1/p] corresponding to those valuations whose Hodge-Tate weights are
given by µ. If the cocharacter is not miniscule, i.e. the Hodge-Tate weights
are not in {0, 1}, then the corresponding quotient of Rfl would be empty.
Our main result has the following consequence.

Corollary 1.2. The scheme Spec(Rfl,µ) is connected.

Acknowledgements: I thank M. Rapoport, X. Caruso and N. Imai for
their remarks on a preliminary version of this paper and for their interest in
this work. The author was supported by the SFB/TR45 "Periods, Moduli
spaces and Arithmetic of Algebraic Varieties" of the DFG (German Research
Foundation).

2. Notations

Let k be a finite field of characteristic p > 0 of degree n = [k : Fp] over
Fp. We fix an algebraic closure F̄p of Fp. Let G denote the reductive group
Resk/Fp GL2 over Fp. Then

(2.1) GF̄p = G⊗Fp F̄p
∼= //

∏n
i=1(GL2)F̄p .

The automorphism of Resk/Fp GL2 induced by the absolute Frobenius on k
acts on the right hand side by shifting the factors. The Weil restriction of the
Borel subgroup of upper triangular matrices in GL2 defines a Borel subgroup
B ⊂ G such that

B ⊗Fp F̄p
∼= //

∏n
i=1Bi

under the isomorphism in (2.1), where Bi ⊂ (GL2)F̄p is the subgroup of
upper triangular matrices.
Denote by LG (resp. L+G) the loop group (resp. the positive loop group) of
G, i.e. the ind-group scheme representing the functor R 7→ G(R((u))) (resp.
R 7→ G(R[[u]])) on the category of Fp-algebras. Further we denote by

FG = LG/L+G
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for the affine Grassmannian of the group G. The isomorphism in (2.1) in-
duces isomorphisms

FG ⊗Fp F̄p
∼= // L(GF̄p)/L

+(GF̄p)
∼= //

∏n
i=1Fi,

where Fi ∼= L(GL2)F̄p/L
+(GL2)F̄p is the affine Grassmannian for GL2 parametris-

ing F̄p[[u]]-lattices in F̄p((u))2. We fix the isomorphism in (2.1) and write

(2.2) pri : GF̄p −→ (GL2)F̄p

for the projection to the i-th factor. We write 〈−,−〉 for the canonical pairing
between characters and cocharacters and fix the characters

det : GL2 −→ Gm

α : T −→ Gm,

where det is the usual determinant, T ⊂ GL2 is the maximal torus of diagonal
matrices and α is the unique dominant root defined by the Borel subgroup
of upper triangular matrices, i.e. the character diag(t1, t2) 7→ t1t

−1
2 .

Let

(2.3) ν : (Gm)F̄p −→ GF̄p
∼=

n∏
i=1

(GL2)F̄p

be a dominant cocharacter defined over the reflex field F ⊂ F̄p and fix an
F-valued point A ∈ LG(F) = G(F((u))). Given an Fp-algebra R we write

ϕ : (R⊗Fp k)((u))→ (R⊗Fp k)((u))

for the homomorphism that is the identity on R, the absolute Frobenius on
k and that maps u to up.
We also write ϕ for the homomorphism F̄p((u))→ F̄p((u)) that is the identity
on F̄p and maps u to up. It will always be clear from the context which ϕ
is used. By the construction in [PR, 2.c.1] there is a reduced projective
F-variety

Cν(A) ⊂ FG ⊗Fp F
whose F̄p-valued points are given by{
g(F̄p ⊗Fp k)[[u]]2 ⊂ (F̄p ⊗Fp k)((u))2

∣∣∣∣ g−1Aϕ(g) ∈ L+G(F̄p)uν
′
L+G(F̄p)

for some ν ′ ≤ ν.

}
Here ≤ is the order on dominant coweights induced by our choice of the Borel
and uν′ is the image of u ∈ Gm(F̄p((u))) under ν ′. This variety is called the
(closed) Kisin variety associated with ν and A, compare [PR, 6.a].
We will also use a different description of the closed points of Cν(A). Let
N = (F̄p ⊗Fp k)((u))2. We can consider the ϕ-linear map

(2.4) ΦA = A(id⊗ ϕ) : N −→ N.

We have an isomorphism

N
∼= // N1 × · · · ×Nn ,
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where Ni are 2-dimensional F̄p((u))-vector spaces and the map ΦA splits up
into ϕ-linear maps

Φi : Ni −→ Ni+1,

where we write Nn+1 = N1.
An F̄p-valued point of FG can be viewed as an n-tupel M = (M1, . . . ,Mn),
where Mi ⊂ Ni is an F̄p[[u]]-lattice.
Given M = (M1, . . . ,Mn) ∈ FG(F̄p) we denote by (ai, bi) ∈ (Z2)+ the
elementary divisors of Φi−1(ϕ∗Mi−1) with respect to Mi.
Consider the cocharacters µi(M) : Gm → GL2 defined by

u 7−→
(
uai 0
0 ubi

)
.

Then the alternative description of Cν(A)(F̄p) is given as follows: for M ∈
FG(F̄p) we have

M ∈ Cν(A)(F̄p)⇐⇒ (µ1(M), . . . , µn(M)) ≤ ν,

with componentwise partition ordering. To analyse the connected compo-
nents of the varieties Cν(A), we will use the language of Bruhat-Tits build-
ings (see [Ti] for example).
Let Z(G) denote the center of G and write Ḡ = G/Z(G).
We write B = B(LG(F̄p)) for the Bruhat-Tits building of G(F̄p((u))) and
B̄ = B(LḠ(F̄p)) for the building of the group Ḡ(F̄p((u))). Then

B ∼= B1 × · · · × Bn
B̄ ∼= B̄1 × · · · × B̄n,

where Bi is isomorphic to the building of GL2(F̄p((u))) and B̄i is isomorphic
to the building of PGL2(F̄p((u))), i.e. B̄i is a topological space that is iso-
morphic to a tree where the link of every vertex is parametrized by P1(F̄p).
We write

di : B̄i × B̄i −→ R
for the Weyl equivariant distance in the tree B̄i, normalized such that the
distance of two neighbouring vertices is equal to 1. For a F̄p[[u]]-lattice
Mi ⊂ Ni

∼= F̄p((u))2 we write M̄i ∈ B̄i or sometimes [Mi] for its homothety
class.

Proposition 2.1. The map M̄i 7→ [Φi(ϕ∗Mi)] extends to a map Φ̄i : B̄i →
B̄i+1. This map has the following properties:
(i) Φ̄i takes geodesics to geodesics.
(ii) Let x, y ∈ B̄i, then di+1(Φ̄i(x), Φ̄i(y)) = pdi(x, y).

Proof. The proof is the same as in [PR, 6.b.2, 6.b.3]. �

We want to reformulate the definition of the Kisin variety Cν(A) in terms
of the building. This is done in the following Proposition.
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Proposition 2.2. Let ν be a cocharacter as in (2.3), defined over the reflex
field F and fix a point A ∈ LG(F). Define the following integers:

ri = 〈α ◦ pri, ν〉 ,
mi = 〈det ◦ pri, ν〉 .

Let M = (M1, . . . ,Mn) ∈ FG(F̄p) be an n-tuple of lattices. Then

M ∈ Cν(A)(F̄p)⇐⇒

{
di(M̄i, Φ̄i−1(M̄i−1)) ≤ ri
det Mi = umidet Φi−1(ϕ∗Mi−1).

Here in the last identity we mean equality of lattices in det Ni
∼= F̄p((u)).

Proof. Let M = g(F̄ ⊗Fp k)[[u]]2 ∈ Cν(A)(F̄p). Write ν ′ for the cocharacter
such that

(2.5) g−1Aϕ(g) ∈ L+G(F̄)uν
′
L+G(F̄).

Under the isomorphism (2.1) we set g = (g1, . . . , gn) and A = (A1, . . . , An),
where gi ∈ GL2(F̄((u))) and Ai ∈ GL2(F̄((u))). Further the cocharacter ν ′
is given by an n-tupel (ν ′1, . . . , ν

′
n), where ν ′i : Gm → GL2 is a cocharacter.

Then M = (M1, . . . ,Mn) with Mi = giF̄[[u]]2 ⊂ Ni and (2.5) translates to

(2.6) g−1
i+1Ai+1ϕ(gi) ∈ GL2(F̄[[u]])uν

′
i+1 GL2(F̄[[u]])

for i = 1, . . . , n where we again identify gn+1 = g1 and An+1 = A1.
Suppose that the cocharacter ν ′i is given by

u 7−→
(
uai 0
0 ubi

)
;

then (2.6) means that the elementary divisors of Φi(ϕ∗Mi) = Ai+1ϕ(gi)F̄p[[u]]2

with respect to Mi+1 = gi+1F̄p[[u]]2 are given by (ai+1, bi+1). Hence (2.6) is
equivalent to

di+1(M̄i+1, Φ̄i(M̄i)) = ai+1 − bi+1

det Φi(ϕ∗Mi) = uai+1+bi+1det Mi+1.

Now the claim follows, as ν ′ ≤ ν is equivalent to

ai + bi = mi = 〈det ◦ pri, ν〉
ai − bi ≤ ri = 〈α ◦ pri, ν〉, for all i = 1, . . . , n.

�

3. Some Lemmas in the building

Before we proceed with the investigation of the Kisin variety, we need two
Lemmas about some subvarietes of the affine Grassmannian defined in terms
of the building.
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Lemma 3.1. Let m ∈ Z and x1, x2 ∈ B(L(PGL2)(F̄p)). Write d for the
distance function on B(L(PGL2)(F̄p)). For r1, r2 ∈ Q, the closed subvariety

X ⊂ FGL2 = LGL2 /L
+ GL2

whose closed points are given by

X(F̄p) =

M ⊂ F̄p((u))2

∣∣∣∣∣∣
det M = umF̄p[[u]] ⊂ F̄p((u))

d(M̄, x1) ≤ r1

d(M̄, x2) ≤ r2


is isomorphic to a Schubert variety in FGL2, i.e it is the closure of some
GL(N) orbit for a suitable lattice N ⊂ F̄p((u))2. Especially X is connected.

Proof. Denote by [x1, x2] ⊂ B(PGL2(F̄p((u)))) the geodesic between x1 and
x2. We assume that d(x1, x2) ≤ r1 + r2, as otherwise X is empty. Let
y ∈ [x1, x2] be the unique point with

d(y, x1) = 1
2(d(x1, x2) + r1 − r2).

Further we set
R = 1

2(r1 + r2 − d(x1, x2)).
Then

(3.1) X(F̄p) =
{

M ⊂ F̄p((u))2

∣∣∣∣ det M = umF̄[[u]]
d(M̄, y) ≤ R

}
,

which can be seen as follows:
If d(M̄, y) ≤ R, then

d(M̄, x1) ≤ d(M̄, y) + d(y, x1) ≤ R+ d(y, x1) = r1

and similarly for x2. If conversely d(M̄, xi) ≤ ri, then we choose an apart-
ment containing x1, x2 and y. Denote by z the projection of M̄ to this
apartment and assume that z is contained in the half line starting at y and
not containing x2. Then

d(M̄, y) = d(M̄, x2)− d(y, x2) ≤ r2 − d(y, x2) = R.

We may replace R by the smallest number such that the equality (3.1) is
possible. If y is a vertex, then we are done.

Assume this is not the case and denote by z1 and z2 the endpoints of the
edge containing y. Fix a lattice M0 ∈ X(F̄p) such that d(M̄0, y) = R. Such
a lattice exists by our definition of R. Then we take for z the unique element
of {z1, z2} such that z ∈ [M̄0, y]. If we define

R̃ = max{d(z, M̄) |M ∈ X(F̄p)},

then we easily see that R̃ = R− d(z, y). We now have

X(F̄p) =
{

M

∣∣∣∣ det M = umF̄p[[u]]
d(M̄, z) ≤ R̃

}
.
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The inclusion "⊂" is obvious from the definition of R̃. The converse inclusion
follows from

d(M̄, z) =

{
d(M̄, y)− d(z, y) if y /∈ [M̄, z]
d(M̄, y) + d(z, y) if y ∈ [M̄, z],

the definition of R̃ and the fact that the distance between the homothety
classes of two lattices with equal determinant is even.

It now follows that X is the closure of the GL(N)-orbit of M̃, where N is
some lattice with homothety class z and M̃ is some lattice with det M̃ =
umF̄p[[u]] and d([M̃], [N]) = R̃. �

Proposition 3.2. Let s ≥ 3 and let N1, . . . , Ns be 2-dimensional F̄p((u))-
vector spaces together with fixed isomorphisms with F̄p((u))2, and let Fi be
the affine Grassmannian of Ni. Suppose that there are ϕ-linear maps

Φi : Ni −→ Ni+1

such that their linearisations are isomorphisms. Let M1 ⊂ N1 and Ms ⊂ Ns

be lattices. Further we fix r2, . . . , rs ∈ Q and m2, . . . ,ms−1 ∈ Z. Then the
closed subvariety X ⊂ F2 × · · · × Fs−1 defined by

X(F̄p) =

(M2, . . . ,Ms−1) ∈ F2 × · · · × Fs−1

∣∣∣∣∣∣
det Mi = umiF̄p[[u]]

di(Φ̄i−1(M̄i−1), M̄i) ≤ ri
for i = 2, . . . , s


is connected.

Proof. We proceed by induction.
Let s = 3. Then we deduce the claim from Lemma 3.1 as follows: The
F̄p-valued points of the subvariety X ⊂ F2 are the lattices M2 ⊂ N2 such
that det M2 = um2F̄p[[u]] and

d2(Φ1(M̄1),M2) ≤ r2

d2(M̄2, Φ̄−1
2 (M̄3)) ≤ r3/p,

where we write Φ̄−1
2 (M̄3) for the preimage of M̄3. This does not necessarily

lie in the building B̄2 = B(PGL(N2)), but is visible after some ramified
extension of F̄p((u)). Replacing Φ̄−1

2 (M̄3) by its projection to B̄2 and r3/p
by

r3/p− d2(Φ̄−1
2 (M̄3), B̄2),

the case s = 3 now is a consequence of Lemma 3.1.

Assume that the assertion holds for s− 1. Then the fibers of X over every
point in F2 are connected by induction hypothesis. And henceX is connected
if and only if pr2(X) ⊂ F2 is connected. Here we use the properness of the
projection pr2.
Let ys−1 be the projection of M̄s onto the convex subset Φ̄s−1(B̄s−1). This is
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indeed a convex subset as Φ̄s−1 is injective and maps an apartment in B̄s−1

onto an apartment in B̄s. If we set ts = ds(M̄s, ys−1), then

ds(Φ̄s−1(z), M̄s) ≤ rs ⇔ ds(Φ̄s−1(z), ys−1) ≤ rs − ts
⇔ ds−1(z, Φ̄−1

s−1(ys−1)) ≤ 1
p(rs − ts),

for all z ∈ B̄s−1. Inductively we denote by ys−i the projection of ys−i+1 ∈ B̄s
onto the convex subset (Φ̄s−1 ◦ · · · ◦ Φ̄s−i)(B̄s−i) ⊂ B̄s and write ts−i+1 for
the integer defined by

ds(ys−i+1, ys−i) = pi−1ts−i+1.

This is indeed an integer as ds−i+1(Φ̄s−i(x), y) is an integer for all vertices
x ∈ B̄s−i and y ∈ B̄s−i+1 (and Φj multiplies distances by p). Now we have

pr2(X(F̄p)) =

M2 ⊂ N2

∣∣∣∣∣∣
det M2 = um2F̄p[[u]]
d2(M̄2, Φ̄1(M̄1)) ≤ r2

d2(M̄2, (Φ̄s−1 ◦ · · · ◦ Φ̄2)−1(y2)) ≤ R/ps−2

 ,

where R = (rs− ts)+p(rs−1− ts−1)+ · · ·+ps−3(r3− t3). This can be seen as
follows: Inductively (starting with the observation above) we can show that
for any lattice Ms−i ⊂ Ns−i we have

ds−i(M̄s−i, (Φ̄s ◦ · · · ◦ Φ̄s−i)−1(ys−i)) ≤
1
pi

i−1∑
j=0

pj(rs−j − ts−j)

if and only if there exist an M̄s−i+1 such that

ds−i+1(M̄s−i+1, Φ̄s−i(M̄s−i)) ≤ rs−i+1

ds−i(M̄s−i+1, (Φ̄s ◦ · · · ◦ Φ̄s−i+1)−1(ys−i+1)) ≤ 1
pi−1

i−2∑
j=0

pj(rs−j − ts−j).

Now the claim follows from Lemma 3.1. �

We return to the setting of the first section. Let ν be a cocharacter as in
(2.3) and define

mi = 〈det ◦ pri, ν〉,
ri = 〈α ◦ pri, ν〉.

We define a subset

(3.2) B(ν) = B1(ν)× · · · × Bn(ν) ⊂ B,

where Bi(ν) is the convex hull of all lattices Mi ⊂ Ni such that det Mi =
usiF̄p[[u]], where the si are integers defined by the set of equations

p2si +mi+1 = si+1 for i = 1, . . . , n− 1

p2sn +m1 = s1.
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Remark 3.3. Note that B(ν) maps homeomorphically onto B̄. But not every
vertex of B(ν) is defined by a lattice. More precisely, if Mi and Ni are
lattices in Bi(ν), then di(M̄i, N̄i) is even.

The integers si are defined in a way such that Cν(A)(F̄p) ⊂ B(ν): If
M = (M1, . . . ,Mn) ∈ Cν(A)(F̄p) with det Mi = usiF̄p[[u]], then

det Mi+1 = umi+1det Φ(ϕ∗Mi)

implies si+1 = mi+1 + p2si.

Corollary 3.4. Denote by pri : Cν(A) → Fi the projection onto the i-th
factor in (2.2). Then the fibers of pri are connected.

Proof. With the notations from above we find Cν(A)(F̄p) ⊂ B(ν). Then the
claim follows from the description of the closed points in Proposition 2.2 and
Proposition 3.2. �

4. The simple case

In this section we will prove the following theorem.

Theorem 4.1. Let A ∈ LG(F̄p) and assume that the object

(N,ΦA) = ((F̄p ⊗Fp k)((u))2,ΦA)

is simple, where ΦA is defined as in (2.4). Let ν be a cocharacter as in (2.3).
Then the Kisin variety Cν(A) is geometrically connected.

The idea of the proof is to analyse the set of lattices in the set B(ν) defined
in (3.2) that correspond to closed points in Cν(A). In the following we will
write [x, y] for the geodesic between two points x, y ∈ B̄ (resp. x, y ∈ B̄i).

Proposition 4.2. Let A ∈ LG(F̄p) and assume that the object

(N,ΦA) = ((F̄p ⊗ k)((u))2,ΦA)

defined by (2.4) is simple, i.e. there is no proper ΦA-stable subspace.
(i) There is a unique point P = (P1, . . . , Pn) ∈ B̄ = B̄1 × · · · × B̄n fixed by
the induced map Φ̄A.
(ii) For all i ∈ {1, . . . , n} the point Pi ∈ B̄i is not a vertex.
(iii) Let M = (M1, . . . ,Mn) ∈ FG(F̄p). Then there is i ∈ {1, . . . , n} such
that

Pi ∈ [M̄i, Φ̄i−1(M̄i−1)].

Proof. (i) Again we write

N = (F̄p ⊗ k)((u))2 = N1 × · · · ×Nn

and Φi = ΦA|Ni : Ni → Ni+1. Then

Φ̃ := Φn ◦ · · · ◦ Φ1 = Φn
A|N1 : N1 −→ N1
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is a ϕ̃-linear endomorphism of N1 whose linearisation is an isomorphism,
where ϕ̃ : F̄p((u))→ F̄p((u)) is the identity on F̄p and maps u to upn .
Further ((F̄p ⊗ k)((u))2,ΦA) is simple if and only if (N1, Φ̃) is. By Caruso’s
classification of simple objects, see [Ca, Corollary 8], there is an F̄p((u))-basis
b1, b2 of N1 such that

Φ̃(b1) = b2

Φ̃(b2) = ausb1

for some a ∈ F̄×p and s ∈ Z. Let A ⊂ B̄1 be the apartment defined by b1, b2
and let A ∼= R be an isomorphism preserving the distance and under which
the homothety class of F̄[[u]]b1 ⊕ F̄p[[u]]b2 is mapped to 0. Then one easily
calculates that the preimage of s/(pn + 1) is fixed under

[Φ̃] = Φ̃ : B̄1 −→ B̄1.

Denote this fixed point by P1 and inductively define

Pi = Φ̄i−1(Pi−1) ∈ B̄i
for i = 2, . . . , n. Then P = (P1, . . . , Pn) is fixed by Φ̄A. Further it is unique
because of Proposition 2.1, (ii).

(ii) As the isomorphism A ∼= R maps the vertices of A exactly to the integers,
the point P1 is a vertex if and only if pn + 1|s. In this case one easily checks
that

F̄p((u))(
√
aus/(p

n+1)b1 + b2)

is a Φ̃-stable subspace. Contradiction. Hence P1 is not a vertex.
Instead of constructing Pi using P1 we could also have used

Φn
A|Ni : Ni −→ Ni

and hence the same argument shows that Pi is not a vertex.

(iii) We first show that P1 ∈ [M̄1, [Φ̃](M̄1)]. Using the above notation
we denote by x1 and x2 the vertices of B̄1 such that P1 ∈ [x1, x2] and
d1(x1, x2) = 1. As Φ̄n maps geodesics to geodesics it is enough to check
that x1 ∈ [P1, Φ̄n(x2)] and vice versa. Using the standard form for Φn from
above this is an easy computation.

Now assume Pi /∈ [Mi, Φ̄i−1(M̄i−1)] for all indices i. Then P2 /∈ [M̄2, Φ̄1(M̄1)]
implies

P3 = Φ̄2(P2) /∈ [Φ̄2(M̄2), Φ̄2(Φ̄1(M̄1))]
Together with P3 /∈ [M̄3, Φ̄2(M̄2)] this implies P3 /∈ [M̄3, Φ̄2(Φ̄1(M̄1))], as

[M̄3, Φ̄2(Φ̄1(M̄1))] ⊂ [M̄3, Φ̄2(M̄2)] ∪ [Φ̄2(M̄2), Φ̄2(Φ̄1(M̄1))].

Proceeding by induction this implies

P1 /∈ [M̄1, Φ̃(M̄1)] = [M̄1, (Φ̄n ◦ · · · ◦ Φ̄1)(M̄1)],

contradicting the above. �
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Given a cocharacter ν as in (2.3), recall the definition of

B(ν) = B1(ν)× · · · × Bn(ν)

from (3.2). This set maps homeomorphically onto B̄. For i ∈ {1, . . . , n} we
write Qi ∈ B̄i for the unique vertex with minimal distance from Pi that is
the homothety class of some lattice in Bi(ν). This vertex is indeed unique
as Pi is not a vertex, and the distance between two homothety classes of
lattices in Bi(ν) is always even, compare Remark 3.3.

We construct a lattice M(Qi) ∈ B(ν) as follows: Let M(Qi)i ∈ Bi(ν)
be the unique lattice such that [M(Qi)i] = Qi. Then M(Qi)j is defined
inductively for j 6= i as the unique lattice inN ⊂ Nj

∣∣∣∣∣∣
N ∈ Bj(ν)

[N] ∈ [Qj , Φ̄j−1([M(Qi)j−1])]
dj([N], Φ̄j−1([M(Qi)j−1])) ≤ rj


with minimal distance from Qj .

Lemma 4.3. Let i ∈ {1, . . . , n}. If there exists M ∈ Cν(A)(F̄p) with M̄i =
Qi, then M(Qi) ∈ Cν(A).

Proof. We only need to check

di(Φ̄i−1[M(Qi)i−1], Qi) ≤ ri.

By induction one easily sees that

dj(Φ̄j−1([M(Qi)j−1]), Qj) ≤ dj(Φ̄j−1([Mj−1]), Qj),

for all j, using that this is true for Pj instead of Qj and the fact that the
difference between the left hand side and the right hand side is even. The
claim now follows from

di(Φ̄i−1(Mi−1), Qi) = di(Φ̄i−1(Mi−1),Mi) ≤ ri.

�

Lemma 4.4. Let i, j ∈ {1, . . . , n} such that M(Qi),M(Qj) ∈ Cν(A). Then
M(Qi)j = M(Qj)j or M(Qj)i = M(Qi)i.

Proof. Assume j < i and [M(Qi)j ] 6= Qj . Then the constructions of M(Qi)
and M(Qj) imply

dj+1(Qj+1, [M(Qj)j+1]) ≤ dj+1(Qj+1, [M(Qi)j+1]).

Proceeding by induction the constructions yield

di(Qi, [M(Qj)i]) ≤ di(Qi, [M(Qi)i]) = 0

and hence M(Qi)i = M(Qj)i. �
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Lemma 4.5. Let N1,N2 ⊂ F̄p((u))2 be lattices with det N1 = det N2. Let
y denote the midpoint of the geodesic

[N̄1, N̄2] ⊂ B(PGL2(F̄p((u)))).

There exists a morphism

χ = χN̄1,N̄2
: P1 −→ FGL2

such that χ(0) = N1 and χ(∞) = N2 and such that

d([χ(z)], y) = 1
2d(N̄1, N̄2)

for all z ∈ F̄p. Note that the right hand side is an integer.

Proof. This is similar to [He, Lemma 3.7]. �

Proposition 4.6. Let M = (M1, . . . ,Mn) ∈ Cν(A). Then there exists an
index i ∈ {1, . . . , n} such that for all Ni ⊂ Ni with det Ni = det Mi and
yi ∈ [P̄i, M̄i], where yi denotes the midpoint of [N̄i, M̄i], there is a morphism

χ : P1
F̄p −→ Fi

such that χ(P1) ⊂ pri(Cν(A)) and χ(0) = Mi and χ(∞) = Ni.

Proof. Let i ∈ {1, . . . , n} such that Pi ∈ [M̄i, Φ̄i−1(M̄i−1)]. This index exists
because of Proposition 4.2, (ii). If M̄i = Qi, then we are done. Assume this
is not the case.

With the notation from Lemma 4.5 we consider the morphism χ = χM̄i,N̄i
.

Then χ(0) = Mi and χ(∞) = Ni. As pri(Cν(A)) is closed it is sufficient
to show that χ(A1(F̄p)) ⊂ pri(Cν(A)(F̄p)). By construction we have for all
z ∈ F̄p,

di([χ(z)], yi) = di([χ(∞)], yi),
where yi denotes the midpoint of [N̄i, M̄i]. As yi ∈ [Pi, M̄i] we have

di([χ(z)], Pi) = di([Mi], Pi) ,

di([χ(z)], Φ̄i−1([Mi−1])) = di([χ(z)], Pi) + di(Pi, Φ̄i−1([Mi−1]))

= di([Mi], Pi) + di(Pi, Φ̄i−1([Mi−1]))

= di([Mi], Φ̄i−1([Mi−1]))

for all z ∈ F̄p.

Lemma 4.7. If Φ̄i(yi) /∈ [Qi+1, M̄i+1], then Φ̄i(yi) ∈ [M̄i+1, Φ̄i([χ(z)])] for
all z ∈ F̄p.

Proof. We can choose an apartment Ā ⊂ B̄i+1 containing the points Qi+1,
Pi+1, Φ̄i(Qi), Φ̄i(yi) and Φ̄i(Mi). We denote by z the projection of M̄i+1

onto this apartment. Denote by Ā− the half line in Ā starting at Φ̄i(yi)
and containing Qi+1. Our assumption means z ∈ Ā−. But we also have
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Qi+1

Mi+1

Φi(Mi)Φi(yi)

Φi(χ(z))

Figure 1. The relative position of Φ̄i(χ(z)) and M̄i+1 =
Mi+1 in the building.

Φ̄i(Qi) ∈ Ā− as the corresponding fact holds true for Pi instead of Qi. The
claim now follows from

[Φ̄i(Qi), Φ̄i(yi)] ∩ [Φ̄i([χ(z)]), Φ̄i(yi)] = {Φ̄i(yi)}.

�

Assume first that Φ̄i(yi) /∈ [Qi+1, M̄i+1]. By Lemma 4.7 we find

di+1([Mi+1], Φ̄i([χ(z)])) = di+1([Mi+1], Φ̄i(yi)) + di+1(Φ̄i(yi), Φ̄([χ(z)]))

= di+1([Mi+1], Φ̄i(yi)) + di+1(Φ̄i(yi), Φ̄([Mi]))

= di+1([Mi+1], Φ̄i([Mi])) ≤ ri+1

for all z ∈ F̄p (compare Fig. 1). It follows that

(M1, . . . ,Mi−1, χ(z),Mi+1, . . . ,Mn) ∈ Cν(A)

for all z and hence we are done.

If Φ̄i(yi) ∈ [Qi+1, M̄i+1], then consider the morphism

χi+1 = χM̄i+1,zi+1
|A1 : A1 −→ Fi+1,

where zi+1 is the point in B̄i+1 defined as follows. The point Φ̄i(yi) is the
midpoint of the geodesic [zi+1, M̄i+1] and there is an apartment Ā ⊂ B̄i+1
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Qi+1

Mi+1

Φi(Mi)Φi(yi)

Φi(χ(z))

zi+1

A

χi+1(z)

Figure 2. The relative position of Φ̄i(χ(z)) and χi+1(z) in
the building.

such that
[zi+1, M̄i+1], [Qi+1, M̄i+1] ⊂ Ā,

compare also Fig. 2. Then, by construction, we have Φ̄i(yi) ∈ [[χ(z)], [χi+1(z)]]
for all z and hence

di+1([χi+1(z)], Φ̄i([χ(z)])) = di+1([χi+1(z)], Φ̄i(yi)) + di+1(Φ̄i(yi), Φ̄i([χ(z)]))

= di+1([χi+1(0)], Φ̄i(yi)) + di+1(Φ̄i(yi), Φ̄i([χ(0)]))

= di+1([χi+1(0)], Φ̄i([χ(0)]));

di+1([χi+1(z)], Pi+1) = di+1([χi+1(0)], Pi+1)

for all z ∈ F̄p (compare Fig. 2).

Denote by yi+1 = Φ̄i(yi) the midpoint of [zi+1, M̄i+1]. If Φ̄i+1(yi+1) /∈
[Qi+2, M̄i+2], then

di+2([Mi+2], Φ̄i−1([χi+1(z)])) = di+2([Mi+2], Φ̄i−1([χi+1(0)]))

for all z ∈ F̄p by the same argument as above and hence

(M1, . . . ,Mi−1, χ(z), χi+1(z),Mi+2, . . . ,Mn) ∈ Cν(A),

and we are done.
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Otherwise, if Φ̄i+1(yi+1) ∈ [Qi+2, M̄i+2], we proceed inductively as above.
If this procedure does not stop we end up with maps

χj : A1
F̄p −→ Fj

for j = 1, . . . , n, where χi = χ|A1 and χj(0) = Mj for all j. Further

d([χj(z)], Pj) = d([χj(0)], Pj) for all z ∈ F̄p
d([χj(z)], Φ̄j−1([χj−1(z)])) = d([χj(0)], Φ̄j−1([χj−1(0)])) for all j 6= i.

Finally our constructions imply that the midpoint of [Pj , [χj(z)]] is inde-
pendent of z ∈ F̄p and this implies (together with Pi ∈ [M̄i, Φ̄i−1(M̄i−1)])
that

di([χi(z)], Φ̄i−1([χi−1(z)])) = di([χi(0)], Φ̄i−1([χi−1(0)])) ≤ ri.

Hence we have (χ1(z), . . . , χn(z)) ∈ Cν(A) for all z ∈ F̄p. �

Corollary 4.8. There exists an index i ∈ {1, . . . , n} such that the projection
pri(Cν(A)) ⊂ Fi is isomorphic to a Schubert variety.

Proof. Let i ∈ {1, . . . , n} be as in the Proposition above, i.e. such that there
exists M ∈ Cν(A)(F̄p) such that Pi ∈ [M̄i, Φ̄i−1(M̄i−1)]. We set

R = max{di(M̄i, Pi) |M = (M1, . . . ,Mn) ∈ Cν(A)(F̄p)},

and fix an Mi, where this maximum is obtained. Applying Proposition 4.6
several times we find that

{Ni ⊂ Ni | det Ni = det Mi and di(N̄i, Pi) = R} ⊂ pri(Cν(A)(F̄p)).

As pri is projective, the projection pri(Cν(A)) is closed. Hence the closure
of the above subset is also contained in pri(Cν(A)), and by maximality of R
it has to be all of pri(Cν(A)). �

Proof of Theorem 4.1. Let x, y ∈ Cν(A). By Proposition 4.6 there exist
i ∈ {1, . . . , n} and M ∈ Cν(A)(F̄p) with M̄i = Qi such that Mi and xi lie
in the same connected component of pri(Cν(A)). By Lemma 4.3 we have
M(Qi) ∈ Cν(A). As the fibers of pri : Cν(A) → Fi and prj : Cν(A) → Fj
are connected by Corollary 3.4, it follows that x and M(Qi) lie in the same
connected component of Cν(A). Similarly there exists j ∈ {1, . . . , n} such
that y and M(Qj) lie in the same connected component of Cν(A). Now,
using Lemma 4.4 and Corollary 3.4 again, it follows that M(Qi) and M(Qj)
lie in the same connected component of Cν(A) and hence the same is true
of x and y. �
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5. Application to deformation spaces

Finally we want to state a consequence of the main result. In this section
we assume p > 2.
Let ρ̄ : GK → GL2(F) be an irreducible 2-dimensional continuous represen-
tation of the absolute Galois group GK = Gal(K̄/K) of K with coefficients
in a finite extension F of Fp. We assume that ρ̄ is flat. In this case the flat
deformation functor of Ramakrishna is pro-representable by a complete local
noetherian W (F)-algebra Rfl.

Recall that we considered a subfield K∞ of K̄ obtained by adjoining a
compatible system of pn-th roots of a fixed uniformizer π ∈ OK . Its absolute
Galois group GK∞ is identified with the absolute Galois group of a local
field in characteristic p and hence there is a ϕ-module (Nρ̄,Φρ̄) of rank 2
over (k⊗Fp F)((u)) associated with the restriction to GK∞ of the Tate-twist
ρ̄(−1). As ρ̄ is irreducible and flat, the ϕ-module (Nρ̄,Φρ̄) is simple.

Fix a cocharacter

µ : Gm,Q̄p −→ (ResK/Qp GL2)Q̄p

which is dominant with respect to the restriction of the Borel subgroup of
upper triangular matrices in GL2. The cocharacter is given by a tuple (µψ)ψ,
where µψ is a dominant cocharacter of GL2 and ψ runs over all embeddings
K ↪→ Q̄p. Assume that µψ is given by t 7→ diag(taψ , tbψ). We write Rfl,µ for
the quotient of Rfl corresponding to those deformations ξ : GK → GL2(OE),
where OE is the ring of integers in some extension E ofW (F)[1/p], such that
the Hodge-Tate weights of ξ are given by µ, i.e. the jumps of the filtrations
on

Dcris(ξ ⊗OE Q̄p)K ⊗K,ψ Q̄p

are given by {aψ, bψ}. We may assume that aψ, bψ ∈ {0, 1} as otherwise Rfl,µ

is empty.

Corollary 5.1. The scheme Spec(Rfl,µ) is connected.

Proof. We construct a dominant cocharacter

ν : Gm,F̄p −→ (Resk/Fp GL2)F̄p

as follows: The cocharacter ν is given by cocharacters νψ̄ of GL2, where ψ̄
runs over all embeddings k ↪→ F̄p.
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For each ψ̄ we define νψ̄(t) = (tαψ̄ , tβψ̄), where (with the notations from
above)

αψ̄ =
∑

ψmod π=ψ̄

aψ

βψ̄ =
∑

ψmod π=ψ̄

bψ.

By [Ki, Corollary 2.4.10] the connected components of Spec(Rfl,µ) are in
bijection with those of Cν(Φρ̄) which yields the claim. �
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