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EUGEN HELLMANN

Abstract. We investigate the relation between p-adic Galois represen-
tations and overconvergent (ϕ,Γ)-modules in families. Especially we
construct a natural open subspace of a family of (ϕ,Γ)-modules, over
which it is induced by a family of Galois-representations.

1. Introduction

The theory of (ϕ,Γ)-modules describes Qp-valued continuous representa-
tions of the absolute Galois group of a local field in terms of semi-linear
algebra objects. This theory was generalized by Dee [Dee] to the case of
coefficients in a complete local noetherian Zp-algebra. Finally Berger and
Colmez [BC] generalize the theory of overconvergent (ϕ,Γ)-modules to fam-
ilies parametrized by p-adic Banach algebras. More preceisely their result
gives a fully faithful functor from the category of vector bundles with contin-
uous Galois action on a rigid analytic variety to the category of families of
étale overconvergent (ϕ,Γ)-modules. This functor fails to be essentially sur-
jective. However it was shown by Kedlaya and Liu in [KL] that this functor
can be inverted locally around rigid analytic points.

It was already pointed out in our previous paper [He1] that the right cat-
egory to handle these objects is the category of adic spaces (locally of finite
type over Qp) as introduced by Huber, see [Hu]. Using the language of adic
spaces, we show in this paper that given a family N of (ϕ,Γ)-modules over
the relative Robba ring B†X,rig on an adic space X locally of finite type
over Qp (see below for the construction of the sheaf B†X,rig), one can con-
struct natural open subspaces X int resp. Xadm, where the family N is étale
resp. induced by a family of Galois representations. This generalizes our
paper [He1] to the set up of (ϕ,Γ)-modules. Moreover we show that the
inclusion Xadm ⊂ X is partially proper, i.e. contains all its specializations
inside X, and we further investigate the difference between the open sub-
spaces X int and Xadm: we show that Xadm contains the tube over a point
in the special fiber of some formal model of X int.
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2 E. HELLMANN

Our main results are as follows. Let K be a finite extension of Qp and
write GK for its absolute Galois group. Further we fix a cyclotomic extension
K∞ =

⋃
K(µpn) of K and write Γ = Gal(K∞/K).

Theorem 1.1. Let X be a reduced adic space locally of finite type over Qp,
and let N be a family of (ϕ,Γ)-modules over the relative Robba ring B†X,rig.
(i) There is a natural open subspace X int ⊂ X such that the restriction of N
to X int is étale, i.e. locally on X int there is a family of étale lattices N ⊂ N .
(ii) The formation (X,N ) 7→ X int is compatible with base change in X, and
X = X int whenever the family N is étale.

In the classical theory of overconvergent (ϕ,Γ)-modules, the slope filtration
theorem of Kedlaya, [Ke, Theorem 1.7.1] asserts that a ϕ-module over the
Robba ring admits an étale lattice if and only if it is pure of slope zero. The
latter condition is a semi-stability condition which only involves the slopes of
the Frobenius. The question whether there is a generalization of this result
to p-adic families was first considered by R. Liu in [Liu], where he shows that
an étale lattice exists locally around rigid analytic points.

The condition of being étale is a local condition and asks for the existence
of a lattice. As these lattices are only unique up to p-isogeny one can not
expect that they glue together to give an étale lattice globally. Hence it is
not easy to define this kind of structure over a formal model of the given
rigid analytic space. However, if we relax the condition of being locally free
and consider classical (ϕ,Γ)-modules in the sense of Fontaine instead of the
overconvergent (ϕ,Γ)-modules (i.e. consider modules over BX,K instead of
modules over B†X,rig in the notations of the body of the paper) we have
the following replacement. Again we refer to the body of the paper for the
precise definitions.

Theorem 1.2. Let X be a reduced adic space of finite type over Qp and let
N be an étale family of (ϕ,Γ)-modules over B†X,rig with associated (ϕ,Γ)-
module N̂ over BX,K . Then there exists a coherent AX,K-sub (ϕ,Γ)-module
N̂ ⊂ N that is étale and generates N̂ over BX,K .
Moreover there exists a formal model X of X such that N̂ admits a model
over X .

On the other hand, we construct an admissible subset Xadm ⊂ X for a
family of (ϕ,Γ)-modules over X. This is the subset over which there exists
a family of Galois representations. It will be obvious that we always have an
inclusion Xadm ⊂ X int.

Theorem 1.3. Let X be a reduced adic space locally of finite type over Qp

and N be a family of (ϕ,Γ)-modules over the relative Robba ring B†X,rig.
(i) There is a natural open and partially proper subspace Xadm ⊂ X and a
family V of GK-representations on Xadm such that N|Xadm is associated to
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V by the construction of Berger-Colmez.
(ii) The formation (X,N ) 7→ (Xadm,V) is compatible with base change in
X, and X = Xadm whenever the family N comes from a family of Galois
representations.
(iii) Assume that X is quasi-compact and N is étale, i.e. X = X int. Let X
be a formal model of X that admits a model for an étale submodule N̂ ⊂ N̂
in the sense of Theorem 1.2. Let Y ⊂ X be the tube of a closed point in the
special fiber of X . Then Y ⊂ Xadm.

In a forthcoming paper we will apply the theory developed in this article to
families of trianguline (ϕ,Γ)-modules and the construction of a (conjectural)
local Galois-theoretic theoretic counterpart of eigenvarieties. This should
give an alternative construction of Kisin’s finite slope space.

Acknowledgements: It is a pleasure to thank R. Liu, T. Richarz, P. Scholze
and M. Rapoport for helpful conversations and J. Nekovář for pointing out
some references. Further I thank R. Bellovin for pointing out some small
mistakes. The author was partially supported by the SFB TR 45 of the
DFG (German Research Foundation).

2. Sheaves of period rings

In this section we define relative versions of the classical period rings used
in the theory of (ϕ,Γ)-modules and in p-adic Hodge-theory. Some of these
sheaves were already defined in [He1, 8].

Let K be a finite extension of Qp with ring of integers OK and residue
field k. Fix an algebraic closure K̄ of K and write GK = Gal(K̄/K) for
the absolute Galois group of K. As usual we choose a compatible system
εn ∈ K̄ of pn-th root of unity and write K∞ =

⋃
K(εn). Let HK ⊂ GK

denote the absolute Galois group of K∞ and write Γ = Gal(K∞/K). Finally
we denote byW = W (k) the ring of Witt vectors with coefficients in k and by
K0 = FracW the maximal unramified extension ofQp insideK. Moreover we
writeW ′ = OK′0 for the ring of integers of the maximal unramified extension
K ′0 of Qp inside K∞.

2.1. The classical period rings. We briefly recall the definitions of the
period rings, as defined in [Be1] for example, see also [KL, 1]. Write

Ẽ
+

= lim←−
x 7→xp

OCp/pOCp .

This is a perfect ring of characteristic p which is complete for the valuation
valE given by valE(x0, x1, . . . ) = valp(x0). Let

Ẽ = Frac Ẽ+ = Ẽ+[1
ε ],
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where ε = (ε1, ε2, . . . ) ∈ Ẽ+. Further we define

Ã+ = W (Ẽ+) Ã = W (Ẽ),

B̃+ = Ã+[1/p] B̃ = Ã[1/p].

On all these ring we have an action of the Frobenius morphism ϕ which is
induced by the p-th power map on Ẽ. Let W ′((T )) = W ′[[T ]][1/T ] denote
the ring of Laurent series with coefficient inW ′. Further we consider the ring
AK which is the p-adic completion ofW ′((T )) and denote by BK = AK [1/p]

its rational analogue. We embed these rings into B̃ by mapping T to the lift
of a uniformizer of the field of norms of K. The morphism ϕ restricts to an
endomorphism, again denoted by ϕ, on AK , resp. BK . Further GK acts on
AK through the quotient GK → Γ.

For r < s ∈ Z we define

A[r,s] =

{∑
n∈Z

anT
n

∣∣∣∣an ∈ K ′0, 0 ≤ valp(anp
n/r)→∞, n→ −∞

0 ≤ valp(anp
n/s)→∞, n→∞

}
,

Ã†,r =

∑
n≥0

[xn]pn
∣∣∣xn ∈ Ẽ, 0 ≤ valE(xn) + prn

p−1 →∞, n→∞

 ,

B̃†,r =

{ ∑
n�−∞

[xn]pn
∣∣∣xn ∈ Ẽ, valE(xn) + prn

p−1 →∞, n→∞
}
.

The rings Ã†,r and B̃†,r are endowed with the valuation

wr :
∑

pk[xk] 7−→ inf
k

{
valE(xk) + prk

p−1

}
.

Using these definitions the perfect period rings (on which the Frobenius ϕ is
bijective) are defined as follows:

(2.1)

B̃†,srig =
Frechet completion of B̃†,s

for the valuations ws′ , s′ ≥ s,
B̃† = lim

−→s
B̃†,s,

B̃†rig = lim
−→s

B̃†,srig.
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Further we have the usual imperfect period rings (where the Frobenius is not
bijective):

(2.2)

B[r,s] = A[r,s][1/p],

B†,r = BK ∩ B̃†,r

A†,r = AK ∩ Ã†,r

B†,srig =
Frechet completion of B†,s

for the valuations ws′ , s′ ≥ s,
B† = lim

−→r
B†,r,

B†rig = lim
−→r

B†,rrig,

A† = AK ∩B†.

Note that these definitions equip all rings with a canonical topology. There
are canonical actions of GK on all of these rings which are continuous for
their canonical topologies. The HK-invariants of R̃ for any of the rings in
(2.1) are given by the corresponding ring without a tilde R in (2.2), where
R is identified with a subring of R̃ by mapping T to a lift of a uniformizer
of the field of norms of K. Hence there is a natural continuous Γ-action on
all the rings in (2.2).

Remark 2.1. Let us point out that some of the above rings have a geometric
interpretation. We write B for the closed unit disc over K ′0 and U ⊂ B for
the open unit disc. Then

A[r,s] = Γ(B[p−1/r,p−1/s],O
+
B ),

B[r,s] = Γ(B[p−1/r,p−1/s],OB),

where B[a,b] ⊂ B is the subspace of inner radius a and outer radius b and
U≥a ⊂ U is the subspace of inner radius a.

The ring B†,rrig is known to be identified with the ring of rigid analytic
functions in the variable T that converge on the annulus 0 < vp(T ) ≤ 1/r,
i.e. we have the identification

B†,rrig = lim
←−s

B[r,s] = Γ(U≥p−1/r ,OU),

and B†,r is identified with its subring of functions that are bounded in that
annulus. We write A[r,∞) ⊂ B†,r for the subring1 of power series with coef-
ficients in W ′ = OK′0 . Note that

A† = lim
←−s

A[r,∞)

1This ring is denoted Rint,r in [KL]
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but thatA[r,∞) is strictly larger than lim
←−s

A[r,s], as for example T−1 ∈ A[r,∞),

but T−1 is not bounded by 1 on any annulus 0 < vp(T ) ≤ 1/r.

The Frobenius endomorhpism ϕ of B̃ induces a ring homomorphisms

A[r,s] −→ A[pr,ps]

A[r,∞) −→ A[pr,∞)

Ã†,s −→ Ã†,ps,

for r, s� 0 and in the limit endomorphisms of the rings

A†,B†,B†rig, B̃
†, B̃†rig.

These homomorphisms will be denoted by ϕ and commute with the action
of Γ, resp. GK .

2.2. Sheafification. Let X be an adic space locally of finite type over Qp in
the sense of Huber [Hu]. Recall that X comes along with a sheaf O+

X ⊂ OX
of open and integrally closed subrings.

Let A+ be a reduced Zp-algebra topologically of finite type. Recall that
for i ≥ 0 the completed tensor products

A+⊗̂ZpWi(Ẽ
+) and A+⊗̂ZpWi(Ẽ)

are the completions of the ordinary tensor product for the topology that is
given by the discrete topology on A+/piA+ and by the natural topology on
Wi(Ẽ

+) resp. Wi(Ẽ), see [He1, 8.1].

Let X be a reduced adic space locally of finite type over Qp. As in [He1,
8.1] we can define sheaves Ẽ +

X , ẼX , Ã +
X and ÃX by demanding

Γ(Spa(A,A+), Ẽ +
X ) = A+⊗̂ZpẼ

+,

Γ(Spa(A,A+), ẼX) = A+⊗̂ZpẼ,

Γ(Spa(A,A+), Ã +
X ) = lim

←− i
A+⊗̂ZpWi(Ẽ

+),

Γ(Spa(A,A+), ÃX) = lim
←− i

A+⊗̂ZpWi(Ẽ),

for an affinoid open subset Spa(A,A+) ⊂ X. It follows from [He1, Lemma
8.1] that these are well defined sheaves.

We define the sheaf AX,K to be the p-adic completion of (O+
X⊗ZpW )((T )),

that is
AX,K(Spa(A,A+)) =

(
A+ ⊗Zp W )((T ))

)∧
for some reduced affinoid Tate algebra (A,A+). As p-adic completion is left
exact it is clear that this rule again defines a sheaf, not just a pre-sheaf.
Further we set BX,K = AX,K [1/p].
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Let A+ be as above and A = A+[1/p]. We define

A+⊗̂ZpA
[r,s] and A+⊗̂ZpÃ

†,s

to be the completion of the ordinary tensor product for the p-adic topology on
A+ and the natural topology on A[r,s] resp. Ã†,s. These completed tensor
products can be viewed as subrings of Γ(Spa(A,A+), ÃSpa(A,A+)). For a
reduced adic space X locally of finite type over Qp, we define the sheaves
A

[r,s]
X and Ã †,sX by demanding

Γ(Spa(A,A+),A
[r,s]
X ) = A+⊗̂ZpA

[r,s],

Γ(Spa(A,A+), Ã †,sX ) = A+⊗̂ZpÃ
†,s,

for an open affinoid Spa(A,A+) ⊂ X. In order to show that these rules
really define sheaves, we proceed as follows: The rings A[r,s] is a lattice in
a Banach-algebra over Qp and so is Ã†,s (it is complete for the valuation
ws) and we may use [KL, Definition 3.2, Lemma 3.3] in order to prove the
sheaf axiom. The claim of loc. cit. is formulated for Banach algebras, but
the proof works the same for lattices in Banach algebras.

Similarly we define the sheaf B̃†,sX . Finally, as in the case above, we can
use these sheaves to define the sheafified versions of (2.1):

(2.3)
B̃†X = lim

−→s
B̃†,sX ,

B̃†X,rig = lim
−→s

B̃†,sX,rig,

where the dirct limits are (by definition) direct limits in the category of
sheaces (i.e. sheafification of the direct limit as pre-sheaves).

Moreover we define B̃†,rX,rig to be the sheaf associated to

Spa(A,A+) 7→ A⊗̂QpB̃
†,r
rig

for Spa(A,A+) ⊂ X affinoid open. Again it is easy to see that this indeed
defines a sheaf: The ring A⊗̂QpB̃

†,r
rig is the Frechet completion of

A⊗̂QpB̃
†,r = Γ(Spa(A,A+), B̃†,sX )

with respect to the family of norms ws′ , for s′ ≥ s. But as completion is left
exact, for some open covering Spa(A,A+) =

⋃
i Ui, the exact sequence

0 −→ Γ(Spa(A,A+), B̃†,rX ) −→
∏
i

Γ(Ui, B̃
†,r
X ) −→

∏
i,j

Γ(Ui ∩ Uj , B̃†,rX )

stays exact after completion. We deduce the sheaf property from B̃†,rX,rig from
the sheaf property of B̃†,rX .

Moreover we have the sheafified versions of the rings (2.2) (by a direct
limit we always mean the direct limit in the category of sheaves, i.e. the
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sheafification of the direct limit in the category of presheaves):

(2.4)

B
[r,s]
X = A

[r,s]
X [1/p],

B†,rX = BX,K ∩ B̃†,rX

A †,rX = AX,K ∩ Ã †,rX

B†X = lim
−→r

B†,rX ,

A †X = AX,K ∩B†X .

Note that all the rational period rings (i.e. those period rings in which p is
inverted) can also be defined on a non-reduced space X by locally embedding
the space into a reduced space Y and restricting the corresponding period
sheaf from Y to X, compare [He1, 8.1].

Remark 2.2. As in the absolute case there is a geometric interpretation of
some of these sheaves of period rings:

A
[r,s]
X = prX,∗

(
O+
X×B

[p−1/r,p−1/s]

)
,

B
[r,s]
X = prX,∗

(
OX×B

[p−1/r,p−1/s]

)
.

Here prX denotes the projection from the product to X.

We may further set

B†,rX,rig = lim
←−s

B
[r,s]
X = prX,∗

(
OX×U≥p−1/r

)
,

B†X,rig = lim
−→r

B†,rrig .

By construction all the “perfect” sheaves R̃X (i.e. those of the period
sheaves with a tilde) are endowed with a continuous OX -linear GK-action
and an endomorphism ϕ commuting with the Galois action. The “imperfect”
sheaves RX (i.e. those period rings without a tilde) are endowed with a
continuous Γ-action and an endomorphism ϕ commuting with the action of
Γ.

Notation: In the following we will use the notation X(Q̄p) for the set of
rigid analytic points of an adic space X locally of finite type over Qp, i.e.
X(Q̄p) = {x ∈ X | k(x)/Qp finite}.

Proposition 2.3. Let X be a reduced adic space locally of finite type over
Qp and let R be any of the integral period rings (i.e. a period ring in which
p is not inverted) defined above. Let RX be the corresponding sheaf of period
rings on X.
(i) The canonical map

Γ(X,RX) −→
∏

x∈X(Q̄p)

k(x)+ ⊗Zp R
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is an injection.
(ii) Let R′ ⊂ R be another integral period ring with corresponding sheaf of
period rings R′X ⊂ RX and let f ∈ Γ(X,RX). Then f ∈ Γ(X,R′X) if and
only if

f(x) ∈ k(x)+ ⊗Zp R
′ ⊂ k(x)+ ⊗Zp R

for all rigid analytic points x ∈ X.

Proof. This is proven along the same lines as [He1, Lemma 8.2] and [He1,
Lemma 8.6]. �

Corollary 2.4. Let X be an adic space locally of finite type over Qp, then(
B̃†X,rig

)ϕ=id
= OX

(
B̃†X,rig

)HK = B†X,rig,(
B̃†X

)ϕ=id
= OX

(
B̃†X

)HK = B†X .

Proof. If the space is reduced this follows from the above by chasing through
the definitions. Otherwise we can locally on X choose a finite morphism to
a reduced space Y (namely a polydisc) and study the ϕ- resp. HK-invariants
in the fibers over the rigid analytic points of Y , compare [He1, Corollary 8.4,
Corollary 8.8] �

Noation: Let X be an adic space locally of finite type and R be any of
the sheaves of topological rings defined above. If x ∈ X is a point then we
will sometimes write Rx for the completion of the fiber R ⊗ k(x) of R at x
with respect to the canonical induced topology.

3. Coherent O+
X-modules and lattices

As the notion of being étale is defined by using lattices we make precise
what we mean by (families of) lattices.

Let X be an adic space locally of finite type over Qp. The space X is
endowed with a structure sheaf OX and a sheaf of open and integrally closed
subrings O+

X ⊂ OX consisting of the power bounded sections of OX . Recall
that for any ringed space, there is the notion of a coherent module, see
[EGA I, 5.3].

Definition 3.1. Let X be an adic space (locally of finite type over Qp) and
let E be a sheaf of O+

X -modules on X.
(i) The O+

X module E is called of finite type or finitely generated, if there
exist an open covering X =

⋃
i∈I Ui and for all i ∈ I exact sequences

(O+
Ui

)di −→ E|Ui −→ 0.

(ii) The module is called coherent, if it is of finite type and for any open
subspace U ⊂ X the kernel of any morphism (O+

U )d → E|U is of finite type.
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(iii) The sheaf E is called quasi-coherent if there is an open covering X =⋃
Ui and there exist exact sequences

(O+
Ui

)⊕J1,i −→ (O+
Ui

)⊕J2,i −→ E|Ui −→ 0.

for some index sets J1,i, J2,i.

Let X = Spa(A,A+) be an affinoid adic space. Then any finitely gener-
ated A+-module M defines a coherent sheaf of O+

X -modules E by the usual
procedure

Γ(Spa(B,B+), E) = M ⊗A+ B+

for an affinoid open subspace Spa(B,B+) ⊂ X.

Remark 3.2. Let X be a reduced adic space locally of finite type over Qp.
Then locally on X the sections Γ(X,OX) as well as Γ(X,O+

X) are noetherian
rings: Indeed, this comes down to the following claim: Let Spa(A,A+) be
an affinoid adic space of finite type over Qp and assume that A is reduced.
We claim that A+ is noetherian. But A+ is identified with the ring of power
bounded elements of A (by definition of being of finite type). By Noether
normalization there exists a morphism

B = Qp〈T1, . . . , Tr〉 −→ A

which makes A into a finite B-module. As the valuation on Qp is discrete
it follows from [BGR, 6.4.1, Corollary 6] that A+ is finite over the ring of
power bounded elements B+ = Zp〈T1, . . . , Tr〉 of B = Qp〈T1, . . . , Tr〉. As
B+ is noetherian, so is A+.

It follows form this remark that an O+
X -module which is locally associated

with a module of finite type is coherent.

Remark 3.3. The same definition of course also applies to the sheaves of
period rings that we defined above. However, as in this case the sections
over open affinoids are (in general) not noetherian, the analogue of Remark
3.2 does not apply.

On the other hand it is not true that all coherent O+
X -modules on an

affinoid space arise in that way, as shown by the following example. The
reason is that the cohomology H1(X,E) of a coherent O+

X -sheaf E does not
necessarily vanish on affinoid spaces.

Example 3.4. Let X = Spa(Qp〈T 〉,Zp〈T 〉) be the closed unit disc. Let

U1 = {x ∈ X | |x| ≤ |p|}
U2 = {x ∈ X | |p| ≤ |x| ≤ 1}.

Define the O+
X -sheaf E1 ⊂ OX by glueing O+

U1
and p−1TO+

U2
over U1 ∩ U2

and E2 ⊂ OX by glueing O+
U1

and pT−1O+
U2
. Then E1 and E2 are coherent
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O+
X -modules. We have

Γ(X,E1) = (1, p−1T )Γ(X,O+
X),

Γ(X,E2) = pΓ(X,O+
X).

Especially E2 is not generated by global sections. If X = U1∪U2
∼= Â1

Zp
∪P̂1

Zp

is the canonical formal model of X = U1 ∪ U2, then E2 is defined by the
coherent OX -sheaf which is trivial on the formal affine line and which is the
twisting sheaf O(1) on the formal projective line, while E1 is defined by its
dual O(−1) on the formal projective line.

Let X be an adic space of finite type over Qp (especially X is quasi-
compact) and E be a coherent O+

X -module on X. As E is not necessarily
associated to an A+-module on an affinoid open Spa(A,A+) ⊂ X, the sheaf
E does not necessarily have a model E over any formal model X of X: The
sheaf U 7→ Γ(Uad, E) does not define E in the generic fiber in general. How-
ever there is a covering X =

⋃
Ui of X by finitely many open affinoids such

that E|Ui is the sheaf defined by the finitely generated Γ(Ui,O+
X)-module

Γ(Ui, E). Hence there is a formal model X of X such that E is defined by
a coherent OX -modules E . Namely X is a formal model on which one can
realize the covering X =

⋃
Ui as a covering by open formal subschemes.

Remark 3.5. If E is a coherent O+
X -module on an adic space X of finite type

over Qp and if U = Spa(A,A+) ⊂ X is an affinoid open, then Γ(U,E) is a
finitely generated A+-module. In fact there is a formal model Ũ of U that
is an admissible blow up of Spf A+ and such that there is a model Ẽ of E|U
over Ũ . Then the claim follows from standard finiteness results for coherent
sheaves and projective morphisms.

Let E be a coherent O+
X -module on an adic space X and let x ∈ X. Let

mx ⊂ OX,x denote the maximal ideal of function vanishing at x and write
m+
x = mx ∩ O+

X,x, i.e. O
+
X,x/m

+
x = k(x)+ is the integral subring of k(x).

We write E ⊗ k(x)+ for the fiber of E at x, that is for the quotient of the
O+
X,x-module

Ex = lim−→
U3x

Γ(U,E)

by the ideal m+
x .

Let X be a formal model of X and E be a coherent OX -module defining
E in the generic fiber. Further let Spf k(x)+ ↪→ X denote the morphism
defining x in the generic fiber. Then E ⊗ k(x)+ = E ⊗ k(x)+. If we write X̄
for the special fiber of X and Ē for the restriction of E to X̄ and if x0 ∈ X̄
denotes the specialization of x, then it follows that

Ē ⊗ k(x0) = (E ⊗ k(x)+)⊗k(x)+ k(x0) = (E ⊗ k(x)+)⊗k(x)+ k(x0).
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Definition 3.6. Let E be a vector bundle of rank d on an adic space X,
locally of finite type over Qp. A lattice in E is a coherent O+

X -submodule
E+ ⊂ E which is locally on X free of rank d over O+

X and which generates
E, i.e. the inclusion induces an isomorphism

E+ ⊗O+
X
OX ∼= E.

Let us assume for simplicity that the space X is reduced and let X be
a formal model of X. In a similar way as above we can define coherent
sheaves of AX,K or A

[r,∞)
X -modules. Moreover we can define the sheaf of

OX -algebras AX ,K on X by

Γ(U ,AX ,K) = Γ(Uad,AX,K).

If X = Spf A+ is affine and ifN is a finitely generateA+⊗̂ZpAK = Γ(X ,AX ,K)-
module, then we can associate to N a coherent AX ,K-module by

Spf B+ 7−→ N⊗̂A+B+ = N⊗A+⊗̂ZpAK
(B+⊗̂ZpAK),

for Spf B+ ⊂ Spf A+ open affine.

Similarly we associate to N a coherent AX,K-module by

Spa(B,B+) 7−→ N⊗̂A+B+ = N⊗A+⊗̂ZpAK
(B+⊗̂ZpAK),

for Spa(B,B+) ⊂ Spa(A,A+) open affinoid.

Given again an arbitrary adic space of finite type over Qp and a formal
model X of X. Let N be a coherent AX ,K-module on X . As a coherent
AX ,K-module is of finite type it follows that there is an affine cover X =⋃
i∈U Spf A+

i such that N|Spf A+
i

is associated to a module Ni as above2.
Then we can associate to N a coherent AX,K-module Nad on X by defining
Nad|(Spf A+

i )ad to be the sheaf associated to Ni. If a coherent AX,K-module
is of the form Nad for some coherent AX ,K-module N , then we say that this
module admits a model over X , or that N is a model for Nad.

Finally let N be a locally free BX,K-module. We say that a coherent
AX,K-submodule N ⊂ N is a lattice in N if N is locally on X free as an
AX,K-module and if N ⊗AX,K

BX,K = N [1
p ] = N .

Similar remarks and constructions apply to A
[r,∞)
X as well.

4. (ϕ,Γ)-modules over the relative Robba ring

In this section we define certain families of ϕ-modules that will appear in
the context of families of Galois representations later on. Some results of
this section are already contained in [He1, 6].

2Note that we do not claim that if X is affine then every coherent AX ,K-module is
associated to a module over Γ(X ,AX ,K).
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Definition 4.1. Let X be an adic space and R ∈ {AX,K ,A
†
X}.

An étale ϕ-module over R is a coherent R-module N together with an
isomorphism

Φ : ϕ∗N −→ N

Definition 4.2. Let X ∈ Adlft
Qp

and

R ∈ {BX,K ,B
†
X ,B

†
X,rig}.

Write R+ ⊂ R for the corresponding integral subring3.
(i) A ϕ-module over R is an R-module N which is locally on X free over R
together with an isomorphism Φ : ϕ∗N → N .
(ii) A ϕ-module over R is called étale if it is locally on X induced from an
étale ϕ-module that is free over R+.
Remark 4.3. Although our main interest is in objects that are (locally on
some X) free, we need more flexibility in the case of Definition 4.1. Espe-
cially, given an étale ϕ-module on some affinoid space, we want to be able
to treat its global sections as an étale ϕ-module.

Recall that K∞ is a fixed cyclotomic extension of K and Γ = Gal(K∞/K)
denotes the Galois group of K∞ over K.

Definition 4.4. Let X ∈ Adlft
Qp

and R be any of the sheaves of rings defined
above.
(i) A (ϕ,Γ)-module over R is a ϕ-module over R together with a continuous
semi-linear action of Γ commuting with the semi-linear endomorphism Φ.
(ii) A (ϕ,Γ)-module over R is called étale if its underlying ϕ-module is étale.

4.1. The étale locus. If X is an adic space (locally of finite type over Qp)
and x ∈ X is any point, we will write ιx : x → X for the inclusion of x.
If R is any of the sheaf of topological rings above and if N is a sheaf of
RX -modules on X, we write

ι∗xN = ι−1
x N ⊗RX

Rx

for the pullback of N to the point x. The following result is a generalization
of [KL, Theorem 7.4] to the category of adic spaces.
Theorem 4.5. Let X be an adic space locally of finite type over Qp and N
be a family of (ϕ,Γ)-modules over B†X,rig.
(i) The set

X int = {x ∈ X | ι∗xN is étale} ⊂ X
is open.
(ii) There exists a covering X int =

⋃
Ui and locally free étale A †Ui

-modules
Ni ⊂ N|Ui which are stable under Φ such that

Ni ⊗A †Ui

B†Ui,rig
= N|Ui ,

3The integral subring of B†X,rig is A †X .
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i.e. N|Xint is étale.

Proof. If X is reduced this is [He1, Corollary 6.11]. In loc. cit. we use a
different Frobenius ϕ. However the proof works verbatim in the case con-
sidered here. For non reduced spaces we follow the same proof using [HaHe,
Theorem 6.5] instead of [He1, Theorem 6.9]4. �

Remark 4.6. If we are interested in integral models it is in fact enough to
work with locally free B†,rX -modules N instead of modules over B†,rX that
are locally over X free: A locally free B

[r,s]
X -module (which is obtained by

restricting a locally free B†,rX -module) is locally on X free over B
[r,s]
X . Hence

[He1, Theorem 6.9] resp. [HaHe, Theorem 6.5] still apply and the assump-
tions of [He1, Proposition 6.5] are satisfied.

Theorem 4.7. Let f : X → Y be a morphism of adic spaces locally of finite
type over Qp. Let NY be a family of (ϕ,Γ)-modules over B†Y,rig and write
NX for its pullback over B†X,rig. Then f

−1(Y int) = X int

Proof. This is [He1, Proposition 6.14]. Again the same proof applies with
the Frobenius considered here. �

4.2. Existence of étale submodules. For later applications to Galois rep-
resentations the existence of an étale lattice locally onX will not be sufficient.
We cannot hope that the étale lattices glue together to a global étale lattice
on the space X. However we have a replacement which will be sufficient for
applications.

Convention: Let X be a reduced adic space locally of finite type over Qp

and let (N ,Φ) be an étale ϕ-module over B†X,rig and (N̂ , Φ̂) be an (étale)
ϕ-module over BX,K . We say that (N̂ , Φ̂) is induced from (N ,Φ) if there
exists a covering X =

⋃
Ui and étale A †Ui

lattices Ni ⊂ N|Ui such that

(N̂ , Φ̂)|Ui =
(
(Ni,Φ)∧

)
[1
p ] = (Ni,Φ)⊗

A †Ui

BUi,K .

Note that BX,K is not a sheaf of B†X,rig-modules and hence we can only
base change after passing to an étale lattice. Further note the every étale
ϕ-module over B†X,rig gives rise to a unique ϕ-module over BX,K , as an étale
A †X -lattice is unique up to p-isogeny, compare [KL, Prop. 6.5].

Proposition 4.8. Let X be a reduced adic space of finite type and (N̂ , Φ̂)
be a ϕ-module over BX,K which is induced from an étale ϕ-module (N ,Φ)

over B†X,rig. Then there exists an étale ϕ-submodule N̂ ⊂ N̂ over AX,K such

4There is a mistake in [He1]. The proof of Theorem 6.9 only applies to reduced spaces.
However, this is enough for the purposes of [He1]. This mistake is fixed in [HaHe].
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that the inclusion induces an isomorphism after inverting p. Moreover there
exists an formal model X of X such that N̂ has a model over X .

Remark 4.9. Note that in this proposition we do not claim that N̂ is locally
free.

Proposition 4.10. Let X be an reduced adic space of finite type over Qp.
Let N be an étale ϕ-module over B†,rX,rig, then there exists a quasi-coherent

A
[r,∞)
X -submodule N ⊂ N which (locally on X) contains a basis of N . More-

over, if X =
⋃m
i=1 Ui is a finite covering such that N|Ui admits a free étale

lattice Ni, then we can choose N such that N |Ui ⊂ Ni.

Proof. LetX =
⋃m
i=1 Ui be a finite covering such thatN|Ui is free and admits

an étale lattice Ni ⊂ N|Ui . Write Vi =
⋃i
j=1 Uj .

Let M1 = N1 on U1. We claim that we can inductively extend Mi on Vi
to Mi+1 on Vi+1 such that

(4.1) pC
′
i+1Nj ⊂Mi+1|Uj ⊂ pCi+1Nj

for j = 1, . . . , i+ 1 for some constants Ci+1 and C ′i+1. The proposition then
follows after rescaling Mn by p−Cn .

The claim is obvious for i = 1 and for the induction step it is sufficient to
extendMi|Vi∩Ui+1 to Ui+1 such that this extension satisfies (4.1). By Lemma
4.11 below it is sufficient to check that there are Ci+1 and C ′i+1 such that

pC
′
i+1Ni+1|Vi∩Ui+1 ⊂Mi|Vi∩Ui+1 ⊂ pCi+1Ni+1|Vi∩Ui+1 .

However this may be checked on the open covering Uj∩Ui+1 for j ∈ {1, . . . , i}
of Vi ∩ Ui+1 and hence by induction hypothesis it is enough to show that

pC
′
i+1Ni+1|Uj∩Ui+1 ⊂ p

C′jNj |Uj∩Ui+1 ⊂ pCjNj |Uj∩Ui+1 ⊂ pCi+1Ni+1|Uj∩Ui+1 .

But by [KL, Prop 6.5] an étale lattice in N|Ui∩Uj is unique up to p-isogeny
and hence the required constants Ci+1 and C ′i+1 do exist. �

Lemma 4.11. Let X = Spa(A,A+) be a reduced affinoid adic space and
U ⊂ X an quasi-compact open subset. Let NX = (B†,rX,rig)d and let NU be a

finitely generated A
[r,∞)
U -submodule of NU = NX |U .

Let N ′, N ′′ ⊂ NX be A
[r,∞)
X -lattices such that

N ′′|U ⊂ NU ⊂ N ′|U

Then there exists a quasi-coherent A
[r,∞)
X -module NX such that NX |U = NU

and
N ′′ ⊂ NX ⊂ N ′.
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Proof. After localizing we may assume that N ′ is free. Denote by j : U ↪→ X
the open embedding of U . We define NX by

NX = ker(N ′ −→ j∗(N
′
U/NU ))

and claim that NX is a coherent A
[r,∞)
X -module containing (locally on X) a

basis of NX .

It is obvious that N ′′ ⊂ NX ⊂ N ′ and hence NX contains a basis of NX .
It remains to check that this sheaf is quasi-coherent. Let U =

⋃
Ui be a

finite covering by open affinoids such that NU is associated to a finitely gen-
erated Γ(Ui,A

[r,∞)
X )-module. Choose a covering X =

⋃
Vj by open affinoids

such that Vj ∩ U ⊂ Uij for some index ij . Then NX is associated to the
Γ(Vj ,A

[r,∞)
X )-module

ker
(
Γ(Vj , N

′) −→ Γ(Uij , N
′
U/NU )⊗

Γ(Uij
,A

[r,∞)
X )

Γ(Vj ∩ U,A [r,∞)
X )

)
.

Especially NX is quasi-coherent. �

Proof of Proposition 4.8. As X is quasi-compact, we can choose a locally
free model (Nr,Φr) of (N ,Φ) over B†,rX,rig for some r � 0. After enlarging r
if necessary, we can assume that there exists a finite covering X =

⋃
Ui and

étale lattices Mi ⊂ Nr|Ui . Using Proposition 4.10 we find that there exist a
quasi-coherent A

[r,∞)
X -module N0 ⊂ N such that

N0|Ui ⊂Mi

and such that N0 generates N as a B†,rrig -module. As N0 is quasi-coherent,
we may assume (after eventually refining the covering) that Ui is affine and
that N0|Ui is associated to a module over Γ(Ui,A

[r,∞)
X ).

Let Nri denote the restriction of Nr to B†,riX,rig, where we write ri = pir.

Then we inductively define quasi-coherent A
[ri,∞)
X -modules Ni ⊂ Nri by

setting
Ni+1 = Ni ⊗A

[ri,∞)
X

A
[ri+1,∞)
X + Φ(ϕ∗Ni).

By assumption, we always have

Nj |Ui ⊂Mi ⊗A
[r,∞)
Ui

A
[rj ,∞)
Ui

.

We define an A †X -submodule N ⊂ N , by setting

N =
(

lim−→
i∈N

Ni

)
⊗A †X ,

where the direct limit again is the direct limit in the category of sheaves.
Further we define N̂ to be the image of the canonical morphism

N ⊗
A †X

AX,K −→ N̂ ,
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where N̂ is the BX,K-module associated to N . We claim that N̂ is co-
herent. This is a local claim and may be checked on affinoid open subsets
U = Spa(A,A+) ⊂ X such that U ⊂ Ui for some i and such that N0|U is
associated to a Γ(U,A

[r,∞)
X )-module. It follows from the construction that

N̂ |U is the sheaf associated to the Γ(U,AX,K) = (A+⊗ZpW
′)((T )))∧-module

(4.2) Γ(U, N̂) ⊂ Γ(U,Mi ⊗A †Ui

AX,K).

We point out that the ring (A+ ⊗Zp W
′)((T ))∧ is noetherian. Indeed, the

ring A+ is the ring of power bounded elements in a reduced Tate-algebra
and hence noetherian, compare Remark 3.2. The ring (A+ ⊗Zp W

′)((T )) is
a localization of the noetherian ring (A+⊗Zp W

′)[[T ]] (the power-series ring
over a noetherian ring is noetherian) and hence itself noetherian. Finally
the p-adic completion of the noetherian Zp-algebra (A+⊗Zp W

′)((T )) is still
noetherian.

As the right hand side of (4.2)is finitely generated, so is the left hand side
and it follows that N̂ is coherent.

Moreover N̂ can be defined over a formal model X of X: indeed we may
take a formal model such that there is an open covering of X realizing a
covering of X by open subsets of the form U as above. This formal model
clearly does the job.

Further the construction implies that

Φ̂(ϕ∗N̂) ⊂ N̂ ,

N̂ ⊗AX,K
BX,K = N̂ .

It is left to show that Φ̂(ϕ∗N̂) → N̂ is an isomorphism. In order to do
so, we may work locally on X and hence assume that X is affinoid and N̂
is contained in an étale AX,K-lattice M̂ ⊂ N̂ . Moreover we may assume
that N̂ is the coherent sheaf associated to its global sections (that we also
denote by N̂ by abuse of notation) and that these global sections are finitely
generated over Γ(X,AX,K).

Given a maximal ideal m ⊂ A+ we denote by km = A+/m the residue field
of m. By Nakayama’s lemma we are reduced to show that for all maximal
ideals m ⊂ A+ the canonical map of finite free (km ⊗Fp k

′)((T ))-modules
(here k′ denotes the residue field of OK′0)

(4.3) Φ̂ : ϕ∗N̂ ⊗A+ km −→ N̂ ⊗A+ km,

is an isomorphism. As both, source and target, have the same dimension as
km((T ))-vector spaces (one is just a “twist" of the other) it is enough to show
that the map is surjective.
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For a rigid analytic point x ∈ X we write mx ⊂ A for the maximal ideal
defining x andm+

x = mx∩A+ ⊂ A+. Then x specializes tom ∈ SpecA+/pA+

if and only if m+
x ⊂ m.

Given x, the fiber N̂ ⊗ k(x)+ is a finitely generated module over the ring
AX,K ⊗ k(x)+ which is (a product of) complete discrete valuation rings.
Write (

N̂ ⊗ k(x)+
)tors−free ⊂ N̂ ⊗ k(x)+

for the submodule which is $x-torsion free. This submodule has to be free
and (

N̂ ⊗ k(x)+
)tors−free

[1
p ] = (N̂ ⊗ k(x)+)[1

p ]

= (M̂ ⊗ k(x)+)[1
p ] = N̂ ⊗ k(x).

It follows from Lemma 4.12 below that
(
N̂ ⊗ k(x)+

)tors−free is an étale ϕ-
module, i.e. Φ̂ is surjective.

Now we consider the morphism (4.3) and assume f̄ ∈ N̂ ⊗A+ km. As
N̂ is p-torsion free, there exists some x ∈ X such that x is in the tube of
m and f ∈

(
N̂ ⊗ k(x)+

)tors−free such that f̄ = f mod $x, where $x is a
uniformizer of k(x)+, i.e. m/m+

x = ($x) as ideals in A+/m+
x = k(x)+. As(

N̂⊗k(x)+
)tors−free is étale, there exists an f ′ ∈ ϕ∗

(
N̂⊗k(x)+

)tors−free such
that Φ̂(f ′) = f . Reducing modulo $x it follows that (f ′ mod $x) maps to
f̄ . We have shown that (4.3) is surjective as claimed.

�

Lemma 4.12. Let F be a finite extension of Qp and (N̂ , Φ̂) be a free étale
ϕ-module over AF,K . Let N̂1 ⊂ N̂ be a finitely generated submodule such that
N̂1[1/p] = N̂ [1/p] and Φ̂(ϕ∗N̂1) ⊂ N̂1. Then (N̂1, Φ̂) is an étale ϕ-module,
i.e.

Φ̂(ϕ∗N̂1) = N̂1.

Proof. As AF,K is (a product of) discrete valuation rings, it is clear that N̂1

is free on d generators, where d is the AF,K-rank of N̂ . Let b1, . . . , bd be a
basis of N̂ and e1, . . . , ed be a basis of N̂1. Let A denote the change of basis
matrix from b to e and denote by Matb(Φ̂) resp. Mate(Φ̂) the matrix of Φ̂ in
the basis b resp. e of N̂ [1/p] = N̂1[1/p]. Then our assumptions imply that

Mate(Φ̂) ∈ Matd×d(AF,K).

On the other hand

Mate(Φ̂) = A−1Matb(Φ̂)ϕ(A)

and hence det
(
Mate(Φ̂)

)
∈ A ×F,K , as N̂ is étale, and

valp(detA) = valp(detϕ(A)).
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�

5. Families of p-adic Galois representations

In this section we study the relation between Galois representations and
(ϕ,Γ)-modules in families. This problem was first considered by Dee in [Dee]
for families parametrized by a complete local noetherian Zp-algebra. Later
the problem was considered by Berger and Colmez in [BC] and Kedlaya
and Liu in [KL], where they define a functor from p-adic families of GK-
representations to p-adic families of overconvergent (ϕ,Γ)-modules.

Definition 5.1. Let G a topological group and X an adic space locally of
finite type over Qp. A family of G-representations over X is a vector bundle
V over X endowed with a continuous G-action.

We write RepXG for the category of families of G-representations over X.
Recall that we write GK = Gal(K̄/K) for the absolute Galois group of a
fixed local field K. In this case Berger and Colmez define the functor

D† : RepXGK −→ {étale (ϕ,Γ)-modules over B†X},
which maps a family V ofGK-representations onX to the étale (ϕ,Γ)-module

D†(V) =
(
V ⊗OX

B̃†X
)HK .

More precisely they construct this functor if X is a reduced affinoid adic
space of finite type. As the functor D† is fully faithful in this case and maps
V to a free B†X -module it follows that we can considerD† on the full category
RepXGK , whenever X is reduced.

In [KL] Kedlaya and Liu consider the variant

D†rig : V 7−→
(
V ⊗OX

B̃†X,rig
)HK = D†(V)⊗

B†X
B†X,rig

which we will also consider here. Note that for an adic space X of finite type
over Qp, the (ϕ,Γ)-module D†(V) is always defined over some B†,sX ⊂ B†X ,
for s� 0. Especially an étale lattice can be defined over A

[s,∞)
X for s� 0.

5.1. The admissible locus. In this section we will always assume that our
adic spaces are reduced.

It is known that the functors D† and D†rig are not essentially surjective.
In [KL], Kedlaya and Liu construct a local inverse to this functor. More
precisely, they show that if N is a family of (ϕ,Γ)-modules over B†X,rig, then
every rigid analytic point at whichN is étale has an affinoid neighborhood on
which the family N is the image of a family of GK-representations. However,
we need to extend this result to the setup of adic spaces in order to define
a natural subspace over which such a family N is induced by a family of
GK-representations.
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Theorem 5.2. Let X be a reduced adic space locally of finite type over Qp

and let N be a family of (ϕ,Γ)-modules of rank d over B†X,rig.
(i) The subset

Xadm =

x ∈ X
∣∣∣∣∣∣∣∣

dimk(x)((N ⊗B†X,rig
B̃†X,rig)⊗ k(x)

)Φ=id
= d

and this k(x)-vector space generates
(N ⊗

B†X,rig
B̃†X,rig)⊗ k(x)


is open.
(ii) There exists a family of GK-representations V on Xadm such that there
is a canonical and functorial isomorphism

D†rig(V) ∼= N|Xadm .

(iii) Let V be a family GK-representations on X such that D†rig(V) = N .
Then Xadm = X.

Remark 5.3. Note that (iii) is not contained in [He1] (in the context of a
different semi-linear operator): there the claim is only made if we assume
X int = X.

Let A be a complete topological Qp-algebra and let A+ ⊂ A be a ring of
integral elements. Assume that the completed tensor products A+⊗̂Ã† and
A⊗̂B̃†rig are defined5. In this case the following approximation Lemma of
Kedlaya and Liu applies.

Lemma 5.4. Let Ñ be a free (ϕ,Γ)-module over A⊗̂B̃†rig such that there
exists a basis on which Φ acts via id +B with

B ∈ pMatd×d(A
+⊗̂Ã†).

Then ÑΦ=id is free of rank d as an A-module. Moreover, an A-module basis
of ÑΦ=id is an A⊗̂B̃†rig-module basis of Ñ .

Proof. This is [KL, Theorem 5.2]. �

Corollary 5.5. Let X be an adic space locally of finite type over Qp and Ñ
be a family of (ϕ,Γ)-modules over B̃†X,rig. Let x in X, then

dim
k̂(x)

(ι∗xÑ )Φ=id = d ⇐⇒ dimk(x)

(
(N ⊗

B†X,rig
B̃†X,rig)⊗ k(x)

)Φ=id
= d.

Proof. The proof is the same as the proof of [He1, Proposition 8.20 (i)]. �

5The examples we consider here, are Γ(X,OX) for an affinoid adic space of finite type
and the completions of k(x) for a point x ∈ X. In the latter case the completed tensor
product is the completion of the fiber of Ã † resp. B̃†rig at the point x.
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Proof of Theorem 5.2. Let x ∈ Xadm and denote by Z the Zariski-closure of
x, that is, the subspace defined by the ideal of all functions vanishing at x.
This is an reduced adic space locally of finite type and we have k(x) = OZ,x,
as the ideal of functions on Z that vanish at x is trivial by definition. Then(

(N ⊗
B†X,rig

B̃†X,rig)⊗ k(x)
)

=
(
(N|Z ⊗B†Z,rig

B̃†Z,rig)⊗ k(x)
)

= lim−→
x∈U⊂Z

Γ(U,N|Z ⊗B†Z,rig
B̃†Z,rig).

By this identification we may choose an affinoid neighborhood U ⊂ Z of x
in Z such that a basis of the Φ-invariants extends to U and forms a basis of
N|U . Then

VU =
(
N|Z ⊗B†Z,rig

B̃†U,rig
)Φ=id

is free of rank d over OU and

VU ⊗OU
B̃†U,rig = N|Z .

On VU we have the diagonal GK-action given by the natural action on B̃†U,rig
and the Γ-action on N . It is a direct consequence of the construction that

D†rig(VU ) = N|U .

Especially it follows that N is étale at x. It follows that we already have
Xadm ⊂ X int. Replacing X by X int we may assume that N is étale every-
where.

Now let x ∈ Xadm and let U denote a neighborhood of x to which we can
lift a basis of Φ-invariants. As N is known to be étale, we can shrink U such
that we are in the situation of Lemma 5.4.

It follows that Xadm is open and that(
N ⊗

B†X,rig
B̃†X,rig

)Φ=id

gives a vector bundle V on Xadm. Again, we have the diagonal action of GK .
As above we find that

D†rig(V) = N|Xadm∩Xint = N|Xadm .

Finally (iii) is obvious by the construction of [BC]. �

Theorem 5.6. Let f : X → Y be a morphism of adic spaces locally of finite
type over Qp with Y reduced. Further let NY be a family of (ϕ,Γ)-modules
over B†Y,rig and write NX for the pullback of NY to X. Then f−1(Y adm) =

Xadm and f∗VY = VX on Xadm.

Proof. Using the discussion above, the proof is the same as the proof of [He1,
Proposition 8.22]. �
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Proposition 5.7. Let X be a reduced adic space locally of finite type over
Qp and let N be a family of (ϕ,Γ)-modules over B†X,rig. Then the inclusion

f : Xadm −→ X

is open and partially proper.

Proof. We have already shown that f is open. Especially it is quasi-separated
and hence we may apply the valuative criterion for partial properness, see
[Hu, 1.3]. Let (x,A) be a valuation ring of X with x ∈ Xadm and let y ∈ X
be a center of (A, x). We need to show that y ∈ Xadm. As y is a specialization
of x, the inclusion i : k(y) ↪→ k(x) identifies k(y) with a dense subfield of
k(x). Especially

Ñy := N ⊗
B†

k(y),rig

B̃†k(y),rig −→ N ⊗B†
k(x),rig

B̃†k(x),rig =: Ñx

is dense. Let e1, . . . , ed be a basis of Ñx on which Φ acts as the identity. We
may approximate this basis by a basis of Ñy. Thus we can choose a basis of
Ñy on which Φ acts by id +A with

A ∈ Matd×d(B̃
†
k(y),rig)

sufficently small. For example we can choose

A ∈ pMatd×d(Ã
†
k(y)).

By Lemma 5.4 and Corollary 5.5 it follows that y ∈ Xadm. �

5.2. Existence of Galois representations. In this section we link defor-
mations of Galois representations and deformations of étale ϕ-modules.

In the following (R,m) will denote a complete local noetherian ring, topo-
logically of finite type over Zp. Again we have a notion of an étale ϕ-module
over

R⊗̂ZpAK = lim
←−n

(
(R/mn)⊗Zp AK

)
.

By this we mean an R⊗̂ZpAK-module D of finite type together with an
isomorphism Φ : ϕ∗D → D. Note that D is not required to be locally free.

A Galois representation with coefficients in R (or a family of Galois rep-
resentations on Spf R) is a continuous representation

G −→ GLd(R),

where G is the absolute Galois group of some field L. The relation between
Galois representations and étale ϕ-modules with coefficients in local rings
was first considered by Dee, see [Dee, 2].

Theorem 5.8. Let X be a reduced adic space of finite type over Qp and and
let (N ,Φ) be a family of étale ϕ-modules over B†X,rig. Then there exists a
formal model X of X and an étale AX,K-module N ⊂ N̂ generating N̂ that
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admits a model over X . Let x0 ∈ X̄ be a closed point in the special fiber of
Xof X and let Y ⊂ X denote the tube over x0. Then (N ,Φ)|Y is associated
to a family of HK-representations on the open subspace Y .

Proof. Let us write N̂ for the BX,K-module associated to N . It follows from
Proposition 4.8 that there exist an étale ϕ-module N̂ over AX,K such that
N̂ ⊂ N̂ as ϕ-modules and such that N̂ contains a basis of N̂ . Moreover
there is some formal model X of X such that N̂ is defined over X . Choose
a formal affine neighborhood U = Spf(A+) of x0 and write U for its generic
fiber. We write m ⊂ A+ for the maximal ideal defining x0 and write R for
the m-adic completion of A+. Then Y is the generic fiber of Spf R in the
sense of Berthelot. Write N = Γ(U, N̂). This is a Γ(U,AX,K)-module on
which Φ̂ induces a semi-linear isomorphism.

It follows that N̂ = N⊗̂A+R is a finitely generated étale ϕ-module over
Γ(Y,AX,K) = R⊗̂ZpAK . Hence, by [Dee], there is a finitely generated R-
module E with continuous HK action associated with N̂. Then

Y ⊃ V 7→ E ⊗R Γ(V,OX)

defines the desired family of Galois representations6 on Y . �

Corollary 5.9. Let X be a reduced adic space locally of finite type over Qp

and N be a family of étale (ϕ,Γ)-modules on X. Then there exists a formal
model X of X and an étale AX,K-module N ⊂ N̂ generating N̂ which admits
a model over X . Let x0 ∈ X̄ be a closed point in the special fiber X of X
and let Y ⊂ X denote the tube of x0. Then N|Y is associated to a family of
GK-representations on the open subspace Y .

Proof. By the above theorem it follows that Y = Y adm. The claim follows
from Theorem 5.2. �

Conjecture 5.10. The claim of the theorem (and the corollary) also holds
true if we replace x0 by a (locally) closed subscheme of the special fiber over
which there exists a Galois representation that is associated with the reduction
of the étale submodule.

5.3. Local constancy of the reduction modulo p. Let L be a finite
extension of Qp with ring of integers OL, uniformizer $L and residue field
kL. Let V be a d-dimensional L-vector space with a continuous action of
a compact group G. We choose a G-stable OL-lattice Λ ⊂ V and write
Λ̄ = Λ/$LΛ for the reduction modulo the maximal ideal of OL. Then Λ̄
is a (continuous) representation of G on a d-dimensional kL = OL/$LOL-
vector space. The representation Λ̄ depends on the choice of a G-stable
lattice Λ ⊂ V , however it is well known that its semisimplification Λ̄ss(i.e.

6Note that we do not claim that locally on Y the integral representation E is associated
with an étale lattice in (N ,Φ). This is only true up to p-isogeny.
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the direct sum of its Jordan-Hölder constituents) is independent of Λ and
hence only depends on the representation V . In the following we will write
V̄ for this representation and refer to it as the reduction modulo $L of the
representation V .

The aim of this section is to show that the reduction modulo $L is lo-
cally constant in a family7 of p-adic representations of G. In the context of
families of Galois representations this was shown by Berger for families of
2-dimensional crystalline representations of Gal(Q̄p/Qp) in a weaker sense:
Berger showed that every rigid analytic point has a neighborhood on which
the reduction is constant, see [Be2].

Let X be an adic space locally of finite type over Qp and E a vector bundle
on X endowed with a continuous G-action. If x ∈ X, then we write(

E ⊗ k(x)
)

=
(
E ⊗ k(x)

)ss
for the semisimplification of the G-representation in the special fiber k(x) =
k(x)+/($x) of k(x).

Proposition 5.11. Let X be an adic space locally of finite type and let E be
a vector bundle on X endowed with a continuous action of a compact group
G. Then the semi-simplification of the reduction E⊗k(x) is locally constant.

Proof. As the claim remains the same once we replace X by its reduced
underlying subspace, we may assume that X is reduced. Moreover, we may
assume that X = Spa(A,A+) is affinoid. For g ∈ G we consider the map

fg : x 7−→ charpoly
(
g|E ⊗ k(x)

)
Let us write fg,i(x) for the i-th coefficient of fg(x). As E ⊗ k(x) admits an
k(x)+-lattice stable under the action of G, we find that fg,i(x) ∈ k(x)+, and
hence fg,i defines a map

fi : G −→ Γ(X,O+
X) = A+.

By construction this map is continuous and hence so is the induced map

f̄i : G −→ Ā = A+/A++,

where A++ ⊂ A denotes the ideal of topologically nilpotent elements. How-
ever, as Ā is endowed with the discrete topology this morphism has to be
constant. On the other hand f̄g,i(x) is the i-th coefficient of the character-
istic polynomial of g acting on Ex/$xEx, where Ex ⊂ E ⊗ k(x) is a G-stable
k(x)+-lattice and $x ∈ k(x)+ is a uniformizer. Now [CR, Theorem 30.16]
implies the claim8. �

7This seems to be a well known fact, at least in the context of pseudo-characters. As
we do not want to assume p > d here, we give a different proof.

8After this paper was written, we noticed that the idea to consider all coefficients of
the characteristic polynonial is used in [Ch] to generalize pseudo-characters.
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6. An example

In this section we give an example in order to show how the condition on
the reduction modulo p to be locally constant obstructs the existence of a
global étlale lattice.

For this section we use different notations. Let K be a totally ramified
quadratic extension of Qp. Fix a uniformizer π ∈ OK and a compatible
system πn ∈ K̄ of pn-th roots of π. Let us write K∞ =

⋃
K(πn) and

GK∞ = Gal(K̄/K∞) for this section. Further let E(u) ∈ Zp[u] denote the
minimal polynomial of π. Finally we adapt the notation from [He1] and
write

BR
X = B†X,rig and B

[0,1)
X = prX,∗OX×U.

We consider the following family (D,Φ,F•) of filtered ϕ-modules on

X = P1
K × P1

K .

Let D = O2
X = OXe1 ⊕OXe2 and Φ = diag($1, $2), where $1 and $2 are

the zeros of E(u). We consider a filtration F• of DK = D ⊗Qp K such that
F0 = DK and F2 = 0. Fix an isomorphism D ⊗Qp K

∼= O2
X ⊕ O2

X and let
the filtration step F1 be the universal subspace on X. This is a family of
filtered ϕ-modules in the sense of [He1]. One easily computes that

Xwa = X\{(0, 0), (∞,∞)},

where Xwa ⊂ X is the weakly admissible locus defined in [He1, 4.2]. Gen-
eralizing a construction of Kisin [Ki] the family (D,Φ,F•) defines a family
(M,Φ) consisting of a vector bundle onXwa×U and an injection Φ : ϕ∗M→
M such that E(u) coker Φ = 0 (see [He1, Theorem 5.4]).

We define the family (N ,Φ) over BR
Xwa as

(6.1) (N ,Φ) = (M,Φ)⊗
B

[0,1)
Xwa

BR
Xwa .

This is obviously a family of ϕ-modules over the Robba ring which is étale
at all rigid analytic points. We can cover the weakly admissible set Xwa =
X1 ∪X2 ∪X3 ∪X4, where

X1 =
(
(P1\{∞})× (P1\{∞})

)
\{(0, 0)} ∼= A2\{0},

X2 = (P1\{∞})× (P1\{0}) ∼= A2,

X3 = (P1\{0})× (P1\{∞}) ∼= A2,

X4 =
(
(P1\{0})× (P1\{0})

)
\{(∞,∞)} ∼= A2\{0}.
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Now the space Xwa contains K-valued points x1, x2 and x3 such that

(M,Φ)⊗ k(x1) ∼=
(
O2

UK
,

(
0 −E(u)
1 $1 +$2

))
(M,Φ)⊗ k(x2) ∼=

(
O2

UK
,

(
0 −(u−$1)

(u−$2) $1 +$2

))
(M,Φ)⊗ k(x3) ∼=

(
O2

UK
,

(
−(u−$1) 0

0 −(u−$2)

))
.

The semi-simplifications of the reduction modulo π of the obvious Φ-stable
W [[u]]-lattices in these ϕ-modules are

(M,Φ)⊗ k(x1) ∼=
(
Fp[[u]]2,

(
0 −u2

1 0

))
,

(M,Φ)⊗ k(x2) ∼=
(
Fp[[u]]2,

(
0 −u
u 0

))
,

(M,Φ)⊗ k(x3) ∼=
(
Fp[[u]]2,

(
−u 0
0 −u

))
.

Using Caruso’s classification [Ca, Corollary 8] of those ϕ-modules we find
that they are all non-isomorphic and in fact even stay non-ismomorphic
after inverting u. After inverting u these ϕ-modules correspond (up to twist)
under Fontaine’s equivalence of categories to the restriction to GK∞ of the
reduction modulo π of the constructed Galois representations E ⊗ k(xi). By
[Br, Theorem 3.4.3] this restriction is fully faithful and hence we find that

E ⊗ k(xi) 6∼= E ⊗ k(xj)

as GK-representations for i 6= j.

As (M,Φ) is admissible in a neighborhood of each of the xi, we can find
some yi such that

E ⊗ k(xi) ∼= E ⊗ k(yi)

for i = 1, 2, 3 and such that in addition yi ∈ X2 for all i for example. Let
us fix a covering X2

∼= A2 =
⋃
Ui by an increasing sequence of closed discs

around the origin and let Vi ⊂ Ui be the corresponding open disc.

Assume that there exists an étale A †X -lattice in (N ,Φ) over all the Ui
defined above. Then it follows from Corollary 5.9 that there exists a family
of GK-representations associated to (M,Φ) on all the Vi.

By the construction in [He1] this family is naturally contained in D ⊗OVi

(OVi⊗̂Bcris) and in fact identified with

Fil0
(
D ⊗OVi

(OVi⊗̂Bcris)
)Φ=id

.

However, if this assumption is true for all i, we easily can find some i such
that y1, y2, y3 ∈ Ui map to the origin in the special fiber, i.e. y1, y2, y3 ∈
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Vi. By Proposition 5.11, we know that the reduction modulo p of the GK-
representation on the fibers of the family E has to be constant, contradicting
the choice of the yi.

Hence we see that a formal model of Ui over which we have an integral
étale structure as in Proposition 4.8 must be a blow up that separates the
specializations of the points y1, y2 and y3.

References

[Be1] L. Berger, Représentations p-adiques et équations différentielles, Inv. Math. 148
(2002), 219-284.

[Be2] L. Berger, Local constancy for the reduction mod p of 2-dimensional crystalline
representations, Bull.Lond. Math. Soc. 44 (2012), no. 3, 451-459.

[BC] L. Berger, P. Colmez, Familles de représentations de de Rham et monodromie
p-adique, Astérisque 319 (2008), 303-337.

[BGR] S. Bosch, U. Güntzer, R. Remmert: Non-Archimedean analysis, Grundlehren der
Mathematischen Wissenschaften 261, SpringerVerlag, Berlin, 1984.

[Br] C. Breuil, Integral p-adic Hodge theory, Algebraic Geometry 2000, Azumino, Adv.
Studies in Pure Math. 36, 2002, 51-80.

[Ca] X. Caruso, Sur la classification de quelques ϕ-modules simples, Moscow Math. J.
9 (2009), no. 3, 562-568

[Ch] G. Chenevier, The p-adic analytic space of pseudo-characters of a profinite group
and pseudo-representations over arbitrary rings, to appear in Proceedings of the
LMS Durham Symposium, Automorphic forms and Galois representations (2011).

[CR] C. W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative
Algebras, Wiley Classics Libary.

[Dee] J. Dee, ϕ-Γ-modules for families of Galois representations, Journal of Algebra 235
(2001), 636-664.

[EGA I] A. Grothendieck, J. Dieudonne, Eléments de géométrie algeébrique I, Publ. Math.
IHES 4, 1960.

[HaHe] U. Hartl, E. Hellmann The universal family of semi-stable p-adic Galois represen-
tations, preprint 2013.

[He1] E. Hellmann, On arithmetic families of filtered ϕ-modules and crystalline repre-
sentations, J. Inst. Math. Jussieu 12 no.4 (2013), pp. 677-726.

[He2] E. Hellmann, On families of weakly admissible filtered ϕ-modules and the adjoint
quotient of GLd, Documenta Math. 16 (2011), 969-991

[Hu] R. Huber, Étale Cohomology of rigid analytic varieties and adic spaces, Aspects of
Math. 30, Viehweg & Sohn, 1996.

[Ke] K. Kedlaya, Slope filtrations for relative Frobemius, in: Représentations p-adiques
I: représentations galoisiennes et (ϕ,Γ)-modules, Asterisque 319 (2008), 259-301.

[Ki] M. Kisin, Crystalline representations and F -crystals, in: Algebraic geometry and
number theory, Prog. in Math. 253, 459-496, Birkhäuser, 2006.

[KL] K. Kedlaya, R. Liu, On families of (ϕ,Γ)-modules, Algebra & Number Theory 4
No. 7 (2010), 943-967.

[Liu] R. Liu, Slope filtrations in families, J. Inst. Math. Jussieu 12 no.1 (2013).


