Algebraic Geometry II

Exercise Sheet 3

Due Date: 25.04.2019

Exercise 1:

Let k be an algebraically closed field and let $X=V\left(T_{1} T_{2}-T_{3}^{2}\right) \subset \mathbb{A}_{k}^{3}$ and $Z=\{(0,0,0)\} \subset X$ viewed as a closed subscheme with the reduced scheme structure. Further let $\tilde{X}=\mathrm{Bl}_{Z} X$ denote the blow up of X in Z.
(i) Show that there is a morphism $f: X \backslash Z \rightarrow \mathbb{P}_{k}^{1}$ that is given by $\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(t_{1}: t_{3}\right)=\left(t_{3}: t_{2}\right)$ on k-valued points.
(ii) Show that f extends to a morphism $\tilde{f}: \tilde{X} \rightarrow \mathbb{P}_{k}^{1}$.
(iii) Show that $\tilde{f}_{\tilde{f}}{ }^{1}(U) \cong \mathbb{A}_{k}^{1} \times U$ for all affine open subsets $U \subset \mathbb{P}_{k}^{1}$.
(In fact $\tilde{f}: \tilde{X} \rightarrow \mathbb{P}_{k}^{1}$ is the geometric vector bundle associated to $\mathcal{O}(2)$ on \mathbb{P}_{k}^{1}.)

Exercise 2+3:

Let k be an algebraically closed field and let $C=V_{+}\left(T_{2}^{2} T_{3}-\left(T_{1}^{3}+T_{1}^{2} T_{3}\right)\right) \subset \mathbb{P}_{k}^{3}$ i.e. C is the closure of the closed subscheme $C^{\prime}=V\left(t_{2}^{2}-\left(t_{1}^{3}+t_{1}^{2}\right)\right) C \cap \mathbb{A}_{k}^{2} \subset \mathbb{A}_{k}^{2}=D_{+}\left(T_{3}\right)$ in \mathbb{P}_{k}^{2}. Let $P_{0}=(0,0) \in C^{\prime} \subset C$.
(i) Show that the morphism $\phi^{\prime}: \mathbb{A}_{k}^{1} \rightarrow C^{\prime}$ that is given by $t \mapsto\left(t^{2}-1, t\left(t^{2}-1\right)\right)$ on k-valued points, extends to a unique morphism

$$
\phi: \mathbb{P}_{k}^{1} \rightarrow C
$$

such that $\phi^{-1}\left(P_{0}\right)$ consists of two points $x, y \in \mathbb{P}_{k}^{1}$, and that the restriction of ϕ induces an isomorphism $\mathbb{P}_{k}^{1} \backslash\{x, y\} \cong C \backslash\left\{P_{0}\right\}$.
(ii) We fix an automorphism of \mathbb{P}_{k}^{1} mapping $\{0, \infty\}$ to $\{x, y\}$ and replace ϕ by its the composition with this automorphism (so that $\phi: \operatorname{Spec} k\left[T^{ \pm 1}\right]=\mathbb{P}_{k}^{1} \backslash\{0, \infty\} \cong C \backslash\left\{P_{0}\right\}$).
Given $\lambda \in k^{\times}$, show that the automorphism $t \mapsto \lambda t$ of Spec $k\left[t^{ \pm 1}\right]$ extends to a commutative diagram

where the horizontal arrows are isomorphisms.
(iii) Let $X_{1}=C \times \mathbb{P}_{k}^{1} \backslash\{0\}$ and $X_{2}=C \times \mathbb{P}_{k}^{1} \backslash\{\infty\}$, and $U=U_{1}=U_{2}=C \times \mathbb{P}_{k}^{1} \backslash\{0, \infty\}=$ $C \times \operatorname{Spec} k\left[t^{ \pm 1}\right]$. Show that there is an isomorphism $\psi: U_{1} \rightarrow U_{2}$ that is given by $(c, a) \mapsto$ ($\psi_{a}(c), a$) on k-valued points.
(iv) Show that X_{1} and X_{2} glue along ψ to a scheme X together with a morphism $f: X \rightarrow \mathbb{P}_{k}^{1}$. (this morphism is by construction projective locally on the target. But it is not a projective morphism. This is not part of the exercise!)
(v) Let $\tilde{X} \rightarrow X$ denote the blow up of X in $\left(\left\{P_{0}\right\} \times \mathbb{P}_{k}^{1} \backslash\{0\}\right) \cup\left(\left\{P_{0}\right\} \times \mathbb{P}_{k}^{1} \backslash\{\infty\}\right)$. Show that the composition $\tilde{X} \rightarrow \mathbb{P}_{k}^{1}$ is a projective morphism.
(in fact it is the projective bundle associated to $\mathcal{O}_{\mathbb{P}_{k}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{k}^{1}}(1)$.)

Exercise 4:

Let A be a noetherian domain of dimension 1 with fraction field K and let L be a finite extension of K. Let $A \subset B \subset L$ be any subring. We want to show that B is noetherian and of dimension at most 1 , using the following steps:
(i) Reduce to the case $K=L$.
(ii) Let $0 \neq \mathfrak{b} \subset B$ be any ideal and let $0 \neq f \in A \cap \mathfrak{b}$. Show that $B / f B$ is of finite length over $A / f A$.
(iii) Deduce that the ideal \mathfrak{b} in (ii) is finitely generated and that it is of height 1 if it is a prime ideal.

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen

