Prof. Dr. E. Hellmann S. Huang

SS 2019

## Algebraic Geometry II Exercise Sheet 3 Due Date: 25.04.2019

## Exercise 1:

Let k be an algebraically closed field and let  $X = V(T_1T_2 - T_3^2) \subset \mathbb{A}^3_k$  and  $Z = \{(0, 0, 0)\} \subset X$  viewed as a closed subscheme with the reduced scheme structure. Further let  $\tilde{X} = \text{Bl}_Z X$  denote the blow up of X in Z.

- (i) Show that there is a morphism  $f: X \setminus Z \to \mathbb{P}^1_k$  that is given by  $(t_1, t_2, t_3) \mapsto (t_1: t_3) = (t_3: t_2)$  on k-valued points.
- (ii) Show that f extends to a morphism  $\tilde{f}: \tilde{X} \to \mathbb{P}^1_k$ .
- (iii) Show that  $\tilde{f}^{-1}(U) \cong \mathbb{A}_k^1 \times U$  for all affine open subsets  $U \subset \mathbb{P}_k^1$ . (In fact  $\tilde{f} : \tilde{X} \to \mathbb{P}_k^1$  is the geometric vector bundle associated to  $\mathcal{O}(2)$  on  $\mathbb{P}_k^1$ .)

## Exercise 2+3:

Let k be an algebraically closed field and let  $C = V_+(T_2^2T_3 - (T_1^3 + T_1^2T_3)) \subset \mathbb{P}_k^3$  i.e. C is the closure of the closed subscheme  $C' = V(t_2^2 - (t_1^3 + t_1^2))C \cap \mathbb{A}_k^2 \subset \mathbb{A}_k^2 = D_+(T_3)$  in  $\mathbb{P}_k^2$ . Let  $P_0 = (0,0) \in C' \subset C$ .

(i) Show that the morphism  $\phi' : \mathbb{A}^1_k \to C'$  that is given by  $t \mapsto (t^2 - 1, t(t^2 - 1))$  on k-valued points, extends to a unique morphism

 $\phi: \mathbb{P}^1_k \to C$ 

such that  $\phi^{-1}(P_0)$  consists of two points  $x, y \in \mathbb{P}^1_k$ , and that the restriction of  $\phi$  induces an isomorphism  $\mathbb{P}^1_k \setminus \{x, y\} \cong C \setminus \{P_0\}$ .

(ii) We fix an automorphism of  $\mathbb{P}^1_k$  mapping  $\{0, \infty\}$  to  $\{x, y\}$  and replace  $\phi$  by its the composition with this automorphism (so that  $\phi$ : Spec  $k[T^{\pm 1}] = \mathbb{P}^1_k \setminus \{0, \infty\} \cong C \setminus \{P_0\}$ ). Given  $\lambda \in k^{\times}$ , show that the automorphism  $t \mapsto \lambda t$  of Spec  $k[t^{\pm 1}]$  extends to a commutative diagram



where the horizontal arrows are isomorphisms.

- (iii) Let  $X_1 = C \times \mathbb{P}^1_k \setminus \{0\}$  and  $X_2 = C \times \mathbb{P}^1_k \setminus \{\infty\}$ , and  $U = U_1 = U_2 = C \times \mathbb{P}^1_k \setminus \{0, \infty\} = C \times \operatorname{Spec} k[t^{\pm 1}]$ . Show that there is an isomorphism  $\psi : U_1 \to U_2$  that is given by  $(c, a) \mapsto (\psi_a(c), a)$  on k-valued points.
- (iv) Show that  $X_1$  and  $X_2$  glue along  $\psi$  to a scheme X together with a morphism  $f: X \to \mathbb{P}^1_k$ . (this morphism is by construction projective locally on the target. But it is not a projective morphism. This is not part of the exercise!)

(v) Let  $\tilde{X} \to X$  denote the blow up of X in  $(\{P_0\} \times \mathbb{P}^1_k \setminus \{0\}) \cup (\{P_0\} \times \mathbb{P}^1_k \setminus \{\infty\})$ . Show that the composition  $\tilde{X} \to \mathbb{P}^1_k$  is a projective morphism. (in fact it is the projective bundle associated to  $\mathcal{O}_{\mathbb{P}^1_k} \oplus \mathcal{O}_{\mathbb{P}^1_k}(1)$ .)

## Exercise 4:

Let A be a noetherian domain of dimension 1 with fraction field K and let L be a finite extension of K. Let  $A \subset B \subset L$  be any subring. We want to show that B is noetherian and of dimension at most 1, using the following steps:

- (i) Reduce to the case K = L.
- (ii) Let  $0 \neq \mathfrak{b} \subset B$  be any ideal and let  $0 \neq f \in A \cap \mathfrak{b}$ . Show that B/fB is of finite length over A/fA.
- (iii) Deduce that the ideal  $\mathfrak{b}$  in (ii) is finitely generated and that it is of height 1 if it is a prime ideal.

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen