Nachklausur zur Vorlesung Kommutative Algebra

Aufgabe 1:

Bestimmen Sie den ganzen Abschluss der folgenden Ringe in der angegebenen Ringerweiterung.

- (i) $k[X_1, \ldots, X_n] \subset k(X_1, \ldots, X_n)$, für einen Körper k;
- (ii) $\mathbb{Z} \subset \mathbb{Z}[X]$;
- (iii) $\mathbb{Z} \subset \mathbb{Q}(i) = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Q}\}.$

Aufgabe 2:

Bestimmen Sie die Dimension der folgenden Ringe.

- (i) $\mathbb{Q}[X]/f(X)$, wobei $f(X) \in \mathbb{Q}[X]$ ein nichtkonstantes, irreduzibles Polynom ist;
- (ii) $\mathbb{Z}[X]/f(X)$, wobei $f(X) \in \mathbb{Z}[X]$ ein nichtkonstantes, normiertes Polynom ist;
- (iii) $\mathbb{Q}[X, X^{-1}].$

Aufgabe 3:

Sei R ein Ring und Nil(R) das Nilradikal von R.

- (i) Sei R noethersch. Zeigen Sie, dass ein $n \in \mathbb{N}$ existiert mit $Nil(R)^n = 0$.
- (ii) Finden Sie ein Beispiel eines Ringes R, so dass Nil(R) kein Primideal ist.

Aufgabe 4:

Sei R ein Ring und M ein R-Modul.

- (i) Zeigen Sie, dass M flach ist, falls M frei ist.
- (ii) Geben Sie ein Beispiel eines R-Moduls M an, so dass M flach aber nicht frei ist.

Aufgabe 5:

Sei R ein Ring, $\mathfrak{p} \subset R$ ein Primideal und M ein endlich erzeugter R-Modul.

- (i) Zeigen Sie, dass $M_{\mathfrak{p}}=0$ genau dann, wenn ein $s\in R\setminus \mathfrak{p}$ existiert mit sM=0.
- (ii) Folgern Sie aus (i), dass $M_{\mathfrak{p}}=0$ eine offene Eigenschaft ist. Das heißt: Sei $\mathfrak{p}\in\operatorname{Spec} R$ mit $M_{\mathfrak{p}}=0$. Dann existiert eine offene Umgebung $U\subset\operatorname{Spec} R$ von \mathfrak{p} mit $M_{\mathfrak{q}}=0$ für alle $\mathfrak{q}\in U$.