Prof. Dr. E. Hellmann S. Huang

$\mathrm{SS}\ 2019$

Algebraic Geometry II Exercise Sheet 1 Due Date: 11.04.2019

Exercise 1:

- (i) Show that a morphism f : X → Y is a monomorphism (i.e. f ∘ g = f ∘ h ⇒ g = h for morphisms g, h : T → X) if and only if the diagonal Δ_f : X → X ×_Y X is an isomorphism. (In particular Δ_f is an isomorphism if f is a locally closed immersion).
- (ii) Let $f: X \to Y$ and $g: Y' \to Y$ be morphisms of schemes. We write $f' = \operatorname{pr}_{Y'}: X' = X \times_Y Y' \to Y'$ resp. $g' = \operatorname{pr}_X: X' \to X$ for the base change of f resp. g. Show that the diagram

$$\begin{array}{c|c} X' & \xrightarrow{g'} & X \\ & & \downarrow & \downarrow \\ & & \downarrow & \downarrow \\ X' \times_{Y'} X' \xrightarrow{g' \times g'} & X \times_Y X \end{array}$$

is cartesian (i.e. a fiber product).

(iii) Let $f: X \to Y$ and $Y \to Z$ be morphisms of schemes. Show that the diagram

where G is induced by the identity on X in both factors, is cartesian and that $\Delta_{g \circ f} = G \circ \Delta_f$.

Exercise 2:

Let A be a ring and let $p : \mathbb{P}^n_A \to \operatorname{Spec} A$ be the projection from the *n*-dimensional space over A to $\operatorname{Spec} A$. Show that p is separated by proving that Δ_p is a closed immersion.

Exercise 3:

- (i) Let f, g : X → Y be morphisms of S-schemes and assume that X is reduced and that Y is separated over S. Assume that there is a dense open subscheme U ⊂ X such that f|_U = g|_U. Show that f = g.
 (*Hint: Show that the graphs* Γ_f and Γ_g coincide.)
- (ii) Let $f: X \to Y$ be a separated morphism. Let $g: Y \to X$ be a section of f, i.e. a morphism such that $f \circ g = id_Y$. Show that g is a closed immersion.
- (iii) Let $f: X \to Y$ be a separated morphism and let $U, V \subset X$ be open subsets that are affine over Y (i.e. the morphisms $U \to Y$ and $V \to Y$ induced by restriction of f are affine morphisms). Show that $U \cap V$ is affine over Y.

Exercise 4: Let \mathcal{P} be a property of morphisms of schemes such that:

- (a) closed immersions have the property \mathcal{P} ,
- (b) the property \mathcal{P} is stable under composition and base change.

Show that

- (i) If $f_1: X_1 \to Y_1$ and $f_2: X_2 \to Y_2$ have \mathcal{P} , then $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ has \mathcal{P} .
- (ii) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms such that g is separated $g \circ f$ has \mathcal{P} . Then f has \mathcal{P} .
- (iii) If $f: X \to Y$ has \mathcal{P} , then $f_{\text{red}}: X_{\text{red}} \to Y_{\text{red}}$ has \mathcal{P} .

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen