Algebraic Geometry II

Exercise Sheet 1

Due Date: 11.04.2019

Exercise 1:

(i) Show that a morphism $f: X \rightarrow Y$ is a monomorphism (i.e. $f \circ g=f \circ h \Rightarrow g=h$ for morphisms $g, h: T \rightarrow X$) if and only if the diagonal $\Delta_{f}: X \rightarrow X \times_{Y} X$ is an isomorphism. (In particular Δ_{f} is an isomorphism if f is a locally closed immersion).
(ii) Let $f: X \rightarrow Y$ and $g: Y^{\prime} \rightarrow Y$ be morphisms of schemes.

We write $f^{\prime}=\operatorname{pr}_{Y^{\prime}}: X^{\prime}=X \times_{Y} Y^{\prime} \rightarrow Y^{\prime}$ resp. $g^{\prime}=\operatorname{pr}_{X}: X^{\prime} \rightarrow X$ for the base change of f resp. g. Show that the diagram

is cartesian (i.e. a fiber product).
(iii) Let $f: X \rightarrow Y$ and $Y \rightarrow Z$ be morphisms of schemes. Show that the diagram

where G is induced by the identity on X in both factors, is cartesian and that $\Delta_{g \circ f}=G \circ \Delta_{f}$.

Exercise 2:

Let A be a ring and let $p: \mathbb{P}_{A}^{n} \rightarrow \operatorname{Spec} A$ be the projection from the n-dimensional space over A to $\operatorname{Spec} A$. Show that p is separated by proving that Δ_{p} is a closed immersion.

Exercise 3:

(i) Let $f, g: X \rightarrow Y$ be morphisms of S-schemes and assume that X is reduced and that Y is separated over S. Assume that there is a dense open subscheme $U \subset X$ such that $\left.f\right|_{U}=\left.g\right|_{U}$. Show that $f=g$.
(Hint: Show that the graphs Γ_{f} and Γ_{g} coincide.)
(ii) Let $f: X \rightarrow Y$ be a separated morphism. Let $g: Y \rightarrow X$ be a section of f, i.e. a morphism such that $f \circ g=\operatorname{id}_{Y}$. Show that g is a closed immersion.
(iii) Let $f: X \rightarrow Y$ be a separated morphism and let $U, V \subset X$ be open subsets that are affine over Y (i.e. the morphisms $U \rightarrow Y$ and $V \rightarrow Y$ induced by restriction of f are affine morphisms). Show that $U \cap V$ is affine over Y.

Exercise 4: Let \mathcal{P} be a property of morphisms of schemes such that:
(a) closed immersions have the property \mathcal{P},
(b) the property \mathcal{P} is stable under composition and base change.

Show that
(i) If $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ have \mathcal{P}, then $f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ has \mathcal{P}.
(ii) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be morphisms such that g is separated $g \circ f$ has \mathcal{P}. Then f has \mathcal{P}.
(iii) If $f: X \rightarrow Y$ has \mathcal{P}, then $f_{\text {red }}: X_{\text {red }} \rightarrow Y_{\text {red }}$ has \mathcal{P}.

