Prof. Dr. E. Hellmann S. Huang

SS 2019

Algebraic Geometry II Exercise Sheet 4 Due Date: 02.05.2019

Exercise 1:

Let $S = \bigoplus_{d \ge 0} S_d$ be a graded ring and let $0 \ne f \in S_d$. Show that f induces a morphism $\phi : \mathcal{O}_X \to \mathcal{O}_X(d)$, where $X = \operatorname{Proj} S$. Furthermore, show that

$$D_+(f) = \{ x \in X \mid \phi_x : \mathcal{O}_{X,x} \to \mathcal{O}_X(d)_x \text{ is an isomorphism} \}.$$

Exercise 2:

Let $S = \bigoplus_{d \ge 0} S_d$ be a graded ring such that S is generated by finitely many elements in S_1 as an S_0 -algebra. Let $X = \operatorname{Proj} S$ and $U = X \setminus V(S_+) \subset \operatorname{Spec} S$. Finally let $M = \bigoplus_{d \in \mathbb{Z}} M_d$ be a graded S-module.

- (i) Let $f \in S_1$. Show that the canonical maps $\operatorname{Spec} S_f \to \operatorname{Spec} S_{(f)}$ glue to give a canonical map $\pi: U \to \operatorname{Proj} S$.
- (ii) Let $f \in S_1$. Show that the canonical map $M_{(f)} \otimes_{S_{(f)}} S_f \to M_f$ induced by the inclusion $M_{(f)} \to M_f$ is an isomorphism.
- (iii) Let \mathscr{F} denote the quasi-coherent sheaf on Spec S such that by $\Gamma(\operatorname{Spec} S, \mathscr{F}) = M$ and let \mathscr{G} denote the quasi-coherent sheaf on Proj S defined by the graded S-module M. Show that there is a canonical isomorphism $\pi^* \mathscr{G} \cong \mathscr{F}|_U$.
- (iv) With the notations in (iii), deduce that $\mathscr{G} = 0$ if and only if the coherent sheaf \mathscr{F} is supported on $V(S_+) \subset \operatorname{Spec} S$.

Exercise 3:

Let X be a scheme and let $\mathscr{S} = \bigoplus_{d>0} \mathscr{S}_d$ be a quasi-coherent graded \mathcal{O}_X -algebra.

- (i) Fix n > 0 and define $\mathscr{S}^{(n)} = \bigoplus_{d \ge 0} \mathscr{S}_{dn}$ which is again a quasi-coherent graded \mathcal{O}_X -algebra. Show that $\operatorname{Proj}_X \mathscr{S} \cong \operatorname{Proj}_X \mathscr{S}^{(n)}$ as X-schemes.
- (ii) Let \mathscr{L} be a line bundle on X. Show that $\mathscr{S}' = \bigoplus_{d \ge 0} (\mathscr{S}_d \otimes \mathscr{L}^{\otimes d})$ is in a natural way a quasi-coherent graded \mathcal{O}_X -algebra, and show that $\operatorname{Proj}_X \mathscr{S} \cong \operatorname{Proj}_X \mathscr{S}'$ as X-schemes.

Exercise 4:

Let k be a field and $n \ge 1$ and let $S = k[T_0, \ldots, T_n]$ and $\mathbb{P}_k^n = \operatorname{Proj} S$. For $d \in \mathbb{Z}$ we write $S_d \subset S$ for the elements that are homogenous of degree d.

- (i) Show that $\Gamma(\mathbb{P}^n_k, \mathcal{O}(d)) = S_d$.
- (ii) Assume that $d \ge 0$ and write $N = \dim_k S_d 1 = \binom{n+d}{d} 1$. Show that the choice of a k-basis of S_d induces a surjection $\mathcal{O}_{\mathbb{P}^n_k}^{N+1} \to \mathcal{O}(d)$.
- (iii) Show that the map $\mathbb{P}^n_k \to \mathbb{P}^N_k$ defined by the surjection from (ii) is a closed embedding. This embedding is called the *d*-fold Vernoese embedding.

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen