Prof. Dr. E. Hellmann S. Huang

SS 2019

Algebraic Geometry II Exercise Sheet 5 Due Date: 09.05.2019

Exercise 1:

Let X be a noetherian scheme, $U \subset X$ an open subscheme and \mathscr{F} a coherent sheaf on U.

- (i) Show that there exists a coherent sheaf \mathscr{F}' on X such that $\mathscr{F}'|_U = \mathscr{F}$.
- (ii) Let \mathscr{G} be a coherent sheaf on X such that $\mathscr{F} \subset \mathscr{G}|_U$. Show that there exists a coherent sheaf $\mathscr{F}' \subset \mathscr{G}$ on X such that $\mathscr{F}'|_U = \mathscr{F}$.

Exercise 2:

Let \mathscr{L} be a line bundle on a noetherian scheme X. Show that the following are equivalent:

- (a) \mathscr{L} is ample
- (b) $\mathscr{L}^{\otimes n}$ is ample for all $n \geq 1$.
- (c) There exists some $n \ge 1$ such that $\mathscr{L}^{\otimes n}$ is ample.

Exercise 3:

- (i) For $m, n \in \mathbb{Z}$ consider the line bundle $\mathscr{L}_{(m,n)} = \operatorname{pr}_1^* \mathcal{O}(m) \otimes_{\mathcal{O}_X} \operatorname{pr}_2^* \mathcal{O}(n)$ on $X = \mathbb{P}_k^1 \times \mathbb{P}_k^1$. Show that $\mathscr{L}_{(m,n)}$ is very ample if and only if $\mathscr{L}_{(m,n)}$ is ample if and only if m, n > 0.
- (ii) Let $X = V_+(T_2^2T_3 (T_1^3 T_1T_3^2)) \subset \mathbb{P}_k^2$. Let $P = [(0, 1, 0)] \in \mathbb{P}_k^2$ and let $\mathscr{I}_P \subset \mathcal{O}_X$ be the sheaf of ideals corresponding to the closed subscheme $\{P\}$ with the reduced scheme structure. Show that \mathscr{I}_P is a line bundle and let $\mathscr{L} = \mathscr{I}_P^{\vee}$. Show that $\mathscr{L}^{\otimes 3} \cong \mathcal{O}_{\mathbb{P}_k^2}(1)|_X$ but that \mathscr{L} is not generated by global sections.

(This shows that \mathscr{L} is ample but not very ample)

Exercise 4:

Let k be an algebraically closed field and let X be a proper k-scheme. Let \mathscr{L} be a line bundle on X and let $\varphi : \mathcal{O}_X^{n+1} \to \mathscr{L}$ be a surjection corresponding to a morphism $g : X \to \mathbb{P}_k^n$. Let $V \subset \Gamma(X, \mathscr{L})$ denote the sub-k-vector space generated by the images of the standard basis of \mathcal{O}_X^{n+1} . Assume that

- (a) for any two closed points $x \neq y \in X$ there exists $s \in V$ such that $0 = s(x) \in \mathscr{L} \otimes \kappa(x)$ and $0 \neq s(y) \in \mathscr{L} \otimes \kappa(y)$ (or vice versa).
- (b) for any closed point $x \in X$ the set $\{s_x \mod \mathfrak{m}_x^2 \mathscr{L}_x \mid s \in V, s_x \in \mathfrak{m}_x \mathscr{L}_x\}$ spans the $\kappa(x)$ -vector space $\mathfrak{m}_x \mathscr{L}_x/\mathfrak{m}_x^2 \mathscr{L}_x$, where $\mathfrak{m}_x \subset \mathcal{O}_{X,x}$ is the maximal ideal.

Show that g is a closed immersion (especially \mathscr{L} is very ample).

(Hint: In order to show that $\mathcal{O}_{\mathbb{P}^n_k,g(x)} \to \mathcal{O}_{X,x}$ is surjective for all closed points $x \in X$, show that a local homomorphism of local rings $(A, \mathfrak{m}_A) \to (B, \mathfrak{m}_B)$ is surjective, if it induces an isomorphism on residue fields, it is finite (i.e. B is finitely generated as an A-module) and the canonical morphism $\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ is surjective.)

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen