Algebraic Geometry II

Exercise Sheet 6

Due Date: 16.05.2019

Exercise 1+2:

Let X be a k-scheme of finite type and let $k[\epsilon]=k[T] /\left(T^{2}\right)$ be the ring of dual numbers which is a first order thickening Spec $k \rightarrow$ Spec $k[\epsilon]$.
(i) Let $x \in X(k)$ be a k-valued point. Show that $\Omega_{X / k}^{1} \otimes k(x) \cong \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ as $k(x)$-vector spaces, where $\mathfrak{m}_{x} \subset \mathcal{O}_{X, x}$ is the maximal ideal.
(ii) Write $f_{x}:$ Spec $k \rightarrow X$ for the morphism defining x. Show that

$$
\begin{aligned}
\operatorname{Def}\left(f_{x}\right): & =\left\{f_{x}^{(1)}: \text { Spec } k[\epsilon] \rightarrow X \text { morphism of } k \text {-schemes deforming } f_{x}\right\} \\
& =\operatorname{Hom}_{k(x)}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}, k(x)\right) \\
& =\left(\mathbf{T}_{x} X\right)(k),
\end{aligned}
$$

where $\mathbf{T}_{x} X=\operatorname{Spec}\left(\operatorname{Sym}\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)\right)$ is the tangent space of X at x (viewed as a scheme).
(iii) Show that there is a canonical closed immersion

$$
\mathbf{C}_{x} X:=\operatorname{Spec}\left(\bigoplus_{d \geq 0} \mathfrak{m}_{x}^{d} / \mathfrak{m}_{x}^{d+1}\right) \longrightarrow \mathbf{T}_{x} X
$$

of the tangent cone into the tangent space.
Show further that a compatible system of deformations

$$
f_{x}^{(n)}: \operatorname{Spec} k[T] /\left(T^{n+1}\right) \rightarrow X
$$

of f_{x} such that $f_{x}^{(1)}$ does not factor over Spec k gives rise to a k-valued point

$$
f \in \operatorname{Proj}\left(\bigoplus_{d \geq 0} \mathfrak{m}_{x}^{d} / \mathfrak{m}_{x}^{d+1}\right)
$$

or equivalently to a line in $\mathbf{C}_{x} X$. Deduce that $\mathbf{C}_{x} X \rightarrow \mathbf{T}_{x} X$ is an isomorphism if X is smooth at x.
(iv) Assume that X is irreducible of dimension n. Show that $\mathbf{C}_{x} X$ is n-dimensional.
(Hint: Show that $\mathrm{Bl}_{\{x\}} X$ is n-dimensional and deduce that the fiber of $\mathrm{Bl}_{\{x\}} X$ over x is $n-1$-dimensional. Then compare this fiber to $\mathbf{C}_{x} X$.)
(v) Compute the tangent space and the tangent cone of X at x in the following cases:
(a) $X=\operatorname{Spec} k\left[T_{1}, T_{2}\right] /\left(T_{1}^{3}-T_{2}^{2}\right)$ and $x=(0,0)$.
(b) $X=\operatorname{Spec} k\left[T_{1}, T_{2}\right] /\left(T_{1}^{2}\left(T_{1}+1\right)-T_{2}^{2}\right)$ and $x=(0,0)$.
(c) $X=\operatorname{Spec} k\left[T_{1}, T_{2}\right] /\left(T_{1}^{2}+T_{2}^{2}-1\right)$ and $x=(1,0)$.

Exercise 3:

Let k be a field. And let $f: \operatorname{Spec} A \rightarrow k$ be a morphism. Show that the following are equivalent:
(a) f is étale
(b) f is unramified
(c) A is isomorphic to a direct product of finitely many finite separable field extensions of k.

Exercise 4:

(i) Let A be a noetherian ring an let E be a finitely generated A-module. Write \mathscr{E} for the coherent sheaf on $\operatorname{Spec} A$ defined by E. Show that $\operatorname{Proj}(\operatorname{Sym} E)$ represents the functor

$$
(f: X \rightarrow \operatorname{Spec} A) \longmapsto\left\{\begin{array}{c|c}
\text { Isomorphism } & \mathscr{L} \text { a line bundle on } X \text { and } \phi: f^{*} \mathscr{E} \rightarrow \mathscr{L} \\
\text { classes of }(\mathscr{L}, \phi) & \text { a surjection of } \mathcal{O}_{X} \text {-modules }
\end{array}\right\}
$$

on the category of A-schemes.
Hint: Choose a surjection $A^{n+1} \rightarrow E$ which induces $\operatorname{Proj}(\operatorname{Sym} E) \hookrightarrow \mathbb{P}_{A}^{n}$ a closed immersion. Show that the morphism $X \rightarrow \mathbb{P}_{A}^{n}$ defined by a surjection $\mathcal{O}_{X}^{n+1} \rightarrow \mathscr{L}$ agrees with the composition

$$
X \cong \underline{\operatorname{Proj}}_{X}(\operatorname{Sym} \mathscr{L}) \longrightarrow \underline{\operatorname{Proj}}_{X}\left(\operatorname{Sym} \mathcal{O}_{X}^{n+1}\right)=\mathbb{P}_{X}^{n} \longrightarrow \mathbb{P}_{A}^{n}
$$

and deduce that $X \rightarrow \mathbb{P}_{A}^{n}$ factors through $\operatorname{Proj}(\operatorname{Sym} E)$ if and only if $\mathcal{O}_{X}^{n+1} \rightarrow \mathscr{L}$ factors through $\mathcal{O}_{X}^{n+1} \rightarrow f^{*} \mathscr{E}$.
(ii) Let Y be a noetherian scheme and let \mathscr{E} a coherent sheaf on Y. Show that $\underline{\operatorname{Proj}}_{Y}(\operatorname{Sym} \mathscr{E})$ represents the functor

$$
(f: X \rightarrow Y) \longmapsto\left\{\begin{array}{c|c}
\text { Isomorphism } & \mathscr{L} \text { a line bundle on } X \text { and } \phi: f^{*} \mathscr{E} \rightarrow \mathscr{L} \\
\text { classes of }(\mathscr{L}, \phi) & \text { a surjection of } \mathcal{O}_{X} \text {-modules }
\end{array}\right\}
$$

on the category of Y-schemes.

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen

