SS 2019

Algebraic Geometry II Exercise Sheet 8

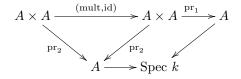
Due Date: 06.06.2019

Exercise 1:

- (i) Let k be a field of characteristic p and let $t \in k$ be an element that is not a p-th power. Show that the curve $X = \operatorname{Spec} k[X,Y]/(Y^2 X^p + t)$ is regular (i.e. all local rings are regular) but not smooth.
- (ii) Determine the set of points at which the following morphisms are smooth.
 - (a) Spec $\mathbb{Z}[T]/(T^2+1) \to \operatorname{Spec} \mathbb{Z}$.
 - (b) Spec $A[T_1, \ldots, T_n]/(T_1T_2\cdots T_n \varpi) \to \text{Spec } A$, where A is a discrete valuation ring and $\varpi \in A$ is a uniformizer.
- (iii) Let k be a field of characteristic char $k \neq 2$ and let $X = \operatorname{Spec} k[T_1, T_2]/(T_2^2(1-T_1^2)-1) \subset \mathbb{A}_k^2$. Compute the set of all points where dT_2 (resp. dT_1) generates Ω_X^1/k , i.e. the set of point where T_2 (resp. T_1) is a uniformizing parameter. This is the set of points where the morphism $g: X \to \mathbb{A}_k^1$ defined by T_2 (resp. T_1) is étale. Compute the sheaf of differentials of g.
- (iv) For $X = \operatorname{Spec} k[T_1, T_2]/(T_2^2 T_1^2(T_1 + 1)) \subset \mathbb{A}_k^2$ (resp. $X = \operatorname{Spec} k[T_1^2, T_2^2]/(T_2^2 T_1^3)$) let $g: \tilde{X} \to X$ denote the blow-up at $(0,0) \in X$. Show that \tilde{X} is smooth over k and compute the tangent space $T_{(0,0)}X$, the morphism on tangent spaces induced by g and the differentials $\Omega^1_{\tilde{X}/X}$.

Exercise 2:

- (i) Let X and Y be S-schemes and let $\operatorname{pr}_X: X \times_S Y \to X$ resp. $\operatorname{pr}_Y: X \times_S Y \to Y$ denote the canonical projections. Show that $\Omega^1_{X \times_S Y/S} \cong \operatorname{pr}_X^* \Omega^1_{X/S} \oplus \operatorname{pr}_Y^* \Omega^1_{Y/S}$.
- (ii) Compute the cotangent bundle of the projective space: Let A be a ring and $\mathbb{P}_A^n \to \operatorname{Spec} A$ be the projective space of dimension n over A. Show that the kernel of the universal quotient $\mathcal{O}_{\mathbb{P}_A^n}^{n+1} \to \mathcal{O}(1)$ is given by $\Omega_{\mathbb{P}_A^n/A}(1)$. Especially show that $\Omega^1_{\mathbb{P}_A^1/A} \cong \mathcal{O}(-2)$.
- (iii) Let $p: G \to \operatorname{Spec} k$ be a group scheme with unit $e: \operatorname{Spec} k \to G$. Let $\Omega^1_{G/k}(e)$ denote the fiber of $\Omega^1_{G/k}$ at e. Show that $\Omega^1_{G/k} \cong \mathcal{O}_G \otimes_k \Omega^1_{G/k}(e) = p^*e^*\Omega^1_{G/k}$. Especially $\Omega^1_{G/k}$ is free. Hint: consider the commutative diagram



Exercise 3:

Let k be a field and let X be an integral k-scheme of finite type. Let $K = k(X) = \mathcal{O}_{X,\eta}$ denote its function field (here $\eta \in X$ is the generic point). Show that the following conditions are equivalent:

- (i) The field extension K over k is separable.
- (ii) There exists a dense open subset $U \subset X$ such that U is smooth over k.

Exercise 4:

Let R be a ring and let

$$A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \alpha \qquad \qquad \downarrow \beta \qquad \qquad \uparrow \qquad \qquad \downarrow 0$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C'$$

be a commutative diagram of R-modules with exact rows. Show that there is a canonical exact sequence

$$\ker \alpha \longrightarrow \ker \beta \longrightarrow \ker \gamma \longrightarrow \operatorname{coker} \alpha \longrightarrow \operatorname{coker} \beta \longrightarrow \operatorname{coker} \gamma$$

(which is functorial in the above diagram).

Exercise 5:

Let R be a ring and let

$$0 \longrightarrow A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow 0$$

be a short exact sequence of complexes of A-modules. Show that there is a long exact sequence

$$\cdots \longrightarrow H^{n-1}(C^{\bullet}) \longrightarrow H^n(A^{\bullet}) \longrightarrow H^n(B^{\bullet}) \longrightarrow H^n(C^{\bullet}) \longrightarrow H^{n+1}(A^{\bullet}) \longrightarrow \cdots$$

of R-modules.

Exercise 6:

- (i) Let \mathcal{A} and \mathcal{B} be abelian categories and let $F: \mathcal{A} \to \mathcal{B}$ be an additive functor that admits an exact additive left adjoint functor $G: \mathcal{B} \to \mathcal{A}$. Show that F preserves injective objects.
- (ii) Let X be a topological space. Show that the category $PSh(X, \mathbb{Z})$ of presheaves of abelian groups has enough injectives.

Hint: Let $U \subset X$ be open. Use that

$$A \longmapsto \left(\underline{A}_U : V \mapsto \begin{cases} A & if \ U \subset V \\ 0 & otherwise \end{cases}\right)$$

defines a functor from abelian groups to $PSh(X,\mathbb{Z})$ adjoint to the functor $\Gamma(U,-)$.

Homepage: https://www.uni-muenster.de/Arithm/hellmann/veranstaltungen