Oberseminar: Classification of smooth mod-p representations Programmvorschlag: Claudius Heyer The study of smooth mod-p representations of a p-adic reductive group was initiated by Barthel–Livné in 1994. For a finite extension F/\mathbb{Q}_p they proved that the smooth irreducible representations of $\mathrm{GL}_2(F)$ over $\overline{\mathbb{F}}_p$ that admit a central character fall into four classes: (i) characters, (ii) twists of Steinberg representations, (iii) irreducible principal series representations, and (iv) supersingular representations. The latter remain mysterious; by work of Breuil they are completely known for $\mathrm{GL}_2(\mathbb{Q}_p)$. But already for $\mathrm{GL}_2(F)$, $F \neq \mathbb{Q}_p$, the classification of supersingular representations turns out to be vastly more complicated. In his landmark paper [Her11] Herzig classified the irreducible admissible representations of $\mathrm{GL}_n(F)$ over $\overline{\mathbb{F}}_p$ in terms of parabolic induction and supersingular representations. While supersingular representations are defined via the mod-p Satake transform, the classification shows that they coincide with the supercuspidal representations, *i.e.*, those that are not a subquotient of a parabolically induced representation. This classification was recently generalized to arbitrary connected reductive groups by Abe-Henniart-Herzig-Vignéras [AHHV16]. In this seminar we follow mostly Herzig's paper [Her11]. - 1) 20 April (Verena Edenfeld): Smooth mod-p representations and the mod-p Satake transform. Cover [Her11] §2.1–§2.3 until Prop. 2.12. State some facts about highest weight representations, e.g., [Hum05] 2.2. Thm.]. As an example, state the classification of the weights of $GL_2(\mathbb{F}_p)$, [Her12] Prop. 8]. Give the proof of [Her11] Lem. 2.5] (at least for GL_n). Some facts about smooth mod-p representations can be found in [Her12] (see, e.g., Lem. 21, third Cor. to Lem. 7, Prop. 5, Prop. 12). - 2) Various lemmas. Finish Her11 §2.3 (starting with Lem. 2.14) and discuss §2.4. Avoid talking about Bruhat–Tits theory (especially in Her11 Lem. 2.16]). In the proof of Her11 Lem. 2.20] state the relevant properties of generalized Tits systems (it is not necessary to give the full definition). Present the example for GL_n at the end of way §2]. If time is runnig out, you may skip Her11 Cor. 2.19]. - 3) Compatibilities between Hecke actions. Cover [Her11] §2.5]. In this talk various subalgebras of Hecke algebras are introduced and identified [Her11] Lem.'s 2.21 and 2.22]. The goal of this talk is to prove [Her11] Cor. 2.25] which constructs isomorphisms between certain compactly induced representations. - 4) Comparison of compact induction with parabolic induction. Prove Her11. Thm. 3.1 and Cor. 3.6. - 5) Hecke eigenvalues and supersingularity. Cover [Her11] §§4 and 5. In particular, define supersingular representations [Her11] Def. 4.7] and prove the different characterizations. Sketch the proof of [Her11] Prop. 5.1]. - 6) Change of weight. Cover Her11 §§6.1 and 6.2 until Prop. 6.7. If time is running out, you may skip Her11 Cor. 6.5]. - 7) Generalized Steinberg representations. Finish Her11 §6], in particular present Cor. 6.10 and Ex. 6.14. (You may skip Her11 Prop. 6.13].) Introduce the generalized Steinberg representations Sp_P Her11 §7] and prove that they are irreducible and admissible Her11 Thm. 7.2] (also consult GK14 §3]). Deduce Her11 Cor. 7.3]. Show that Sp_P contains a unique weight V_P with multiplicity one and determine the Hecke eigenvalues of V_P Her11 Prop. 7.4]. Finally determine the Jordan-Hölder factors of $\operatorname{Ind}_P^G \operatorname{Sp}_Q$ Her11 Prop. 7.6]. - 8) Irreducibility of parabolic inductions. Prove the criterion for the irreducibility of parabolic inductions [Her11] Thm. 8.1] and its generalization [Her11], Thm 8.6]. Show that general parabolically induced representations are of finite length and determine the subquotients [Her11] Thms. 8.5 and 8.7]. Finally, prove the general [Her11] Thm. 8.8]. 1 - 9) The right adjoint of parabolic induction. Define the ordinary parts functor Ord_P [Eme10], 3.1.9. Def.] and sketch the proof of the fact [Eme10] Thm. 4.4.6] that Ord_P is right adjoint to Ind_P^G . (Keep in mind that in our setting A is a field.) Finally prove [Her11], Prop. 9.1]. - 10) Classification. Finish Her11 §9.1 and discuss §9.2 until Lem. 9.16. In particular, give the classification of irreducible admissible $GL_n(F)$ -representations Her11 Thm. 9.8] and prove Her11 Cor.'s 9.10, 9.11, 9.13]. - 11) The submodule structure of parabolically induced representations. Prove Her11 Thm. 9.17]; references to Bruhat–Tits theory can be treated very lightly. Then discuss Her11 §10]. - 12) Survey: Classification for general reductive groups. The aim of this talk is to give an overview of the classification of irreducible admissible representations of a general connected reductive group. Cover the introduction in AHHV16. In particular, explain how the description of the irreducible admissible representations in terms of triples (P, σ, Q) relate to the description in talk 10 ## References - [AHHV16] N. Abe, G. Henniart, F. Herzig, and M.-F. Vignéras. A Classification of Irreducible Admissible mod p Representations of p-Adic Reductive Groups. Journal of the American Mathematical Society, 30(2):495–559, Jun 2016. doi:10.1090/jams/862 - [Eme10] Matthew Emerton. Ordinary parts of admissible representations of p-adic reductive groups I. Definition and first properties. In Représentations p-adiques de groupes p-adiques III : méthodes globales et géométriques, number 331 in Astérisque. Société mathématique de France, 2010. URL: http://www.numdam.org/item/AST_2010__331__355_0/. - [GK14] Elmar Grosse-Klönne. On special representations of p-adic reductive groups. Duke Mathematical Journal, 163(12), Sep 2014. doi:10.1215/00127094-2785697 - [Her10] Florian Herzig. A satake isomorphism in characteristic p. Compositio Mathematica, 147(1):263–283, Aug 2010. doi:10.1112/s0010437x10004951 - [Her11] Florian Herzig. The Classification of Irreducible Admissible mod p Representations of a p-Adic GL_n. Inventiones mathematicae, 186(2):373–434, Mar 2011. doi:10.1007/s00222-011-0321-z - [Her12] Florian Herzig. The mod p Representation Theory of p-Adic Groups https://www.math.toronto.edu/herzig/modpreptheory.pdf 2012. Notes for graduate course at Fields Institute. - [Hum05] James E. Humphreys. Modular Representations of Finite Groups of Lie Type. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005. doi:10.1017/CB09780511525940 - [Iwa] Nagayoshi Iwahori. Generalized Tits system (Bruhat decomposition) on p-adic semisimple groups. Amer. Math. Soc., Providence, RI, pages 71-83. URL: https://www-fourier.ujf-grenoble.fr/~panchish/ ETE%20LAMA%202018-AP/lecturesZETAS2018/IwahoriNGeneralized%20Tits%20System%20%28Bruhat% 20Decomposition%29%2814p.pdf