Harmonic Branched Coverings and Uniformization of $CAT(\kappa)$ Spheres

Christine Breiner, Fordham University

joint work with Chikako Mese, Johns Hopkins

Christine Breiner, Fordham University Harmonic Maps into $CAT(\kappa)$ spaces

Start with a map

$$u: M \to N$$

where M, N are "geometric spaces" (Riemannian manifolds, metric measure spaces, metric spaces, etc.).

The *energy* of the map *u* is taken by

- Measuring the stretch of the map at each point $p \in M$.
- Integrating this quantity over *M*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

For $u: (M,g) \rightarrow (N,h)$ (Riemannian manifolds) the *energy* is

$$E(u) := \int_M |du|^2 dx$$

where $du \in \Gamma(T^*M \otimes f^*TN)$ is the differential and

$$|du|^2(x) := g^{ij}(x)h_{\alpha\beta}(u(x))rac{\partial u^{lpha}}{\partial x^i}(x)rac{\partial u^{eta}}{\partial x^j}(x).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Harmonic Maps

Definition

For Riemannian manifolds M, N, the map $u : M \rightarrow N$ is *harmonic* if it is a critical point for the energy functional E.

ヘロト ヘアト ヘビト ヘビト

ъ

Harmonic Maps

Definition

For Riemannian manifolds M, N, the map $u : M \rightarrow N$ is *harmonic* if it is a critical point for the energy functional E.

Restricting to Euclidean case, this means for all $v \in C_0(\Omega, \mathbb{R})$ with $E[v] < \infty$:

$$\lim_{t\to 0}\frac{E[u+tv]-E[u]}{t}=0.$$

More generally, the Euler-Lagrange Equation is:

$$\Delta_{g}u^{\gamma}+g^{ij}(x)\Gamma^{\gamma}_{\alpha\beta}(u(x))\frac{\partial u^{\alpha}}{\partial x^{i}}(x)\frac{\partial u^{\beta}}{\partial x^{j}}(x)=0.$$

く 同 と く ヨ と く ヨ と

Smooth Examples

- harmonic functions
- geodesics
- isometries
- totally geodesic maps
- minimal surfaces
- holomorphic maps between Kähler manifolds

ヘロン 人間 とくほ とくほ とう

ъ

Harmonic maps into $CAT(\kappa)$ spaces

Today we consider maps

 $u: \Sigma \rightarrow (X, d)$ where

Σ is a Riemann surface
 (X, d) is a compact locally CAT(κ) space: geodesic
 space

★週 ▶ ★ 理 ▶ ★ 理 ▶ …

3

Today we consider maps

 $u: \Sigma \rightarrow (X, d)$ where

- Σ is a Riemann surface
- (X, d) is a compact locally CAT (κ) space:
 - Generalizes notion of sectional curvature $\leq \kappa$.

K>0

イロト イポト イヨト イヨト 三日

Today we consider maps

 $u: \Sigma \rightarrow (X, d)$ where

- Σ is a Riemann surface
- (X, d) is a compact locally CAT (κ) space:
 - Generalizes notion of sectional curvature $\leq \kappa$.
 - Defined via comparison triangles:

Definition (Korevaar-Schoen)

Let $u : \Omega \subset \mathbb{C} \to (X, d)$. For $u \in L^2(\Omega, X)$, we let

$$e^u_\epsilon(z) := rac{1}{2\pi\epsilon} \int_{\partial \mathbb{D}_\epsilon(z)} rac{d^2(u(z),u(\zeta))}{\epsilon^2} d heta$$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

3

Definition (Korevaar-Schoen)

Let $u : \Omega \subset \mathbb{C} \to (X, d)$. For $u \in L^2(\Omega, X)$, we let

$$e^u_\epsilon(z) := rac{1}{2\pi\epsilon} \int_{\partial \mathbb{D}_\epsilon(z)} rac{d^2(u(z),u(\zeta))}{\epsilon^2} d heta.$$

Then the energy of u is defined

$$E[u] := \sup_{\substack{\phi \in C_0^{\infty}(\Omega) \\ \phi \in [0,1]}} \limsup_{\epsilon \to 0} \int_{\Omega} \phi(z) e_{\epsilon}^{u}(z) dx dy.$$

ヘロト 人間 とくほ とくほ とう

3

If $E[u] < \infty$ then there exists a function $e^u \in L^1(\Omega, \mathbb{R})$ such that

 $e^{u}_{\epsilon}(z)dxdy \rightarrow e^{u}(z)dxdy$ (weakly as measures). Let energy density for u.

▲冊▶▲臣▶▲臣▶ 臣 のへで

If $E[u] < \infty$ then there exists a function $e^u \in L^1(\Omega, \mathbb{R})$ such that

 $e_{\epsilon}^{u}(z)dxdy \rightarrow e^{u}(z)dxdy$ (weakly as measures).

Definition

A map $u : \Omega \to X$ is *harmonic* if it is locally energy minimizing.

Christine Breiner, Fordham University Harmonic Maps into $CAT(\kappa)$ spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Motivation - Uniformization

 Uniformization Theorem For Riemann Surfaces [Koebe, Poincaré]

Every simply connected Riemann surface is conformally equivalent to the open disk, the complex plane, or the Riemann sphere.

イロト イポト イヨト イヨト 三日

Motivation - Uniformization

 Uniformization Theorem For Riemann Surfaces [Koebe, Poincaré]

Every simply connected Riemann surface is conformally equivalent to the open disk, the complex plane, or the Riemann sphere.

• A consequence:

Every smooth Riemannian metric g defined on a closed surface S is conformally equivalent to a metric of constant Gauss curvature.

イロト イポト イヨト イヨト 三日

Measurable Riemann Mapping Theorem
[Moorey '38, Ahlfors-Bers '60]

Let $\mu : \mathbb{C} \to \mathbb{C}$ be an L^{∞} function with $||\mu||_{L^{\infty}} < 1$. Then there exists a unique homeomorphism $f : \mathbb{C} \to \mathbb{C}$ such that

$$\partial_{\overline{z}}f(z) = \mu(z)\partial_z f(z)$$
. \leftarrow analytic distortion

The <u>dilatation</u> of f at z is $H(z) := \frac{1+|\mu(z)|}{1-|\mu(z)|}$. $\leftarrow \text{semetric}$ metric

Non-smooth Uniformization

Other non-smooth uniformization results:

- Reshetnyak '93
- Bonk-Kleiner '02
- Rajala '17
- Lytchak-Wenger '20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Non-smooth Uniformization

Other non-smooth uniformization results:

- Reshetnyak '93
- Bonk-Kleiner '02
- Rajala '17
- Lytchak-Wenger '20

We use global existence and branched covering results to show:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Non-smooth Uniformization

Other non-smooth uniformization results:

- Reshetnyak '93
- Bonk-Kleiner '02
- Rajala '17
- Lytchak-Wenger '20

We use global existence and branched covering results to show:

• For (S, d) a locally CAT (κ) sphere, there exists a harmonic homeomorphism $h : \mathbb{S}^2 \to (S, d)$ which is

(本語) (本語) (二語)

Theorem (B.-Fraser-Huang-Mese-Sargent-Zhang, '20)

Let Σ be a compact Riemann surface and (X, d) be a compact, locally CAT(κ) space. Let $\phi : \Sigma \to X$ be a finite energy, continuous map. Then either:

- there exists a harmonic map u : Σ → X homotopic to φ or
- there exists an almost conformal harmonic map
 v : S² → X.

▲御♪ ▲ヨ♪ ▲ヨ♪ 三臣

Theorem (B.-Fraser-Huang-Mese-Sargent-Zhang, '20)

Let Σ be a compact Riemann surface and (X, d) be a compact, locally CAT(κ) space. Let $\phi : \Sigma \to X$ be a finite energy, continuous map. Then either:

- there exists a harmonic map u : Σ → X homotopic to φ or
- there exists an almost conformal harmonic map
 v : S² → X.

What's missing for a uniformization theorem?

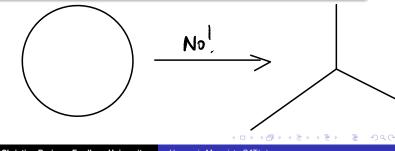
$$\xi = S^2$$

(χ_1 d) homeomorphic to S^2

- Generalizes Sacks-Uhlenbeck existence of minimal two spheres.
- No PDE available.
- Exploits local convexity properties of $CAT(\kappa)$ spaces.
- Existence and regularity of Dirichlet solutions required.
- Produce harmonic map via harmonic replacement.

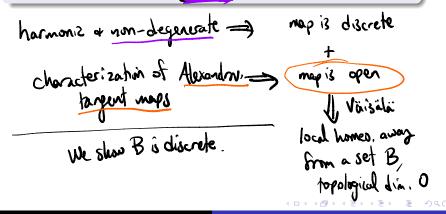
Definition

We will say a harmonic map $u : \Sigma \to (X, d)$ from a Riemann surface into a locally CAT(κ) space is *non-degenerate* if, at every point, infinitesimal circles map to infinitesimal ellipses. (That is, tangent maps of *u* do not collapse along any ray.)



Theorem (B.-Mese '20)

A proper, non-degenerate harmonic map from a Riemann surface to a locally CAT(κ) surface is a branched cover.



Definition

Given a geodesic space (X, d), the Alexandrov Tangent Cone of X at q is the cone over the space of directions \mathcal{E}_q given by

$$\mathcal{T}_q X := [0,\infty) imes \mathcal{E}_q / \sim$$

with metric

$$\delta((s, [\gamma_1]), (t, [\gamma_2])) := t^2 + s^2 - 2st \cos([\gamma_1], [\gamma_2]).$$

ъ

三) (

< □ > < 同 > < 三 > <

Definition

Let $u : \mathbb{D} \to X$ be a harmonic map into a $CAT(\kappa)$ space (X, d). Let

$$\log_{\sigma}: (X, d_{\sigma}) \rightarrow (T_q X, \delta)$$

such that $\log_{\sigma}(q') := (d_{\sigma}(q, q'), [\gamma_{q'}])$. Then for maps u_{σ} which converge to a tangent map of u, the maps

$$\log_{\sigma} \circ u_{\sigma} : \mathbb{D} \to T_q X$$

converge to what is called an Alexandrov tangent map of u.

イロト イポト イヨト イヨト 一臣

Key Points

- In general, tangent cones need not be well behaved. We prove:
 If (S,d) is a CAT(K) surface than
 TyS is a metric one mer a finite buyth simple closed curve.
- In general, Alexandrov tangent maps need not be harmonic. We prove:

Key points

Kuwert classified homogeneous harmonic maps from \mathbb{C} into an NPC cone (\mathbb{C} , ds^2) where

$$ds^2 = \beta^2 |z|^{2(1-\beta)} dz^2$$
. (\bigstar)

For a non-degenerate, harmonic *u*, tangent maps are thus of the form

$$v_{*}(z) = \begin{cases} cz^{\alpha/\beta} \text{ with } \alpha/\beta \in \mathbb{N}, & \text{if } k = 0, \\ c\left(\frac{1}{2}\left(k^{-\frac{1}{2}}z^{\alpha} + k^{\frac{1}{2}}\overline{z}^{\alpha}\right)\right)^{1/\beta}, & \text{if } 0 < k < 1. \end{cases}$$

$$K \text{ 's order of u at 0.}$$

イロト イポト イヨト イヨト 三日

Lemma

A non-trivial almost conformal harmonic map $u : \Sigma \to (S, d)$ from a Riemann surface to a locally $CAT(\kappa)$ surface is non-degenerate.

Theorem (B.-Mese '20)

If (S, d) is a locally CAT(κ) sphere, then there exists a map $h : \mathbb{S}^2 \to (S, d)$ such that

- h is an almost conformal harmonic homeomorphism.
- h and h^{-1} are 1-quasiconformal.
- h is unique up to a Möbius transformation.
- the energy of h is twice the Hausdorff 2-dimensional measure of (S, d).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Application: Uniformization

- There exists a finite energy map.
- Use global existence and local analysis to find almost conformal, harmonic branched cover *u*.
- Use u to define an equivalence relation on S² and a complex structure on the quotient space Q.
 T
 T
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q
 Q<