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Start with a map
u:-M-—N

where M, N are “geometric spaces” (Riemannian manifolds,
metric measure spaces, metric spaces, etc.).

The energy of the map u is taken by
@ Measuring the stretch of the map at each point p € M.

@ Integrating this quantity over M.
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Harmonic Maps

For u: (M, g) — (N, h) (Riemannian manifolds) the energy is

E(u) = / ldufdx
M
where du € T(T*M @ f*TN) is the differential and
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Definition

For Riemannian manifolds M, N, the map u: M — N'is
harmonic if it is a critical point for the energy functional E.
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Definition

For Riemannian manifolds M, N, the map u: M — N'is
harmonic if it is a critical point for the energy functional E.

Restricting to Euclidean case, this means for all v € Cyo(Q2, R)
with E[v] < oc:
im Elu+tv] - E[u] _
t—0 t
More generally, the Euler-Lagrange Equation is:
ou~,  ouP
axt Mg ¥ =0

0.

Agu" + g"(x) ] 5(u(x))
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Harmonic maps

Smooth Examples

@ harmonic functions

@ geodesics

@ isometries

@ ftotally geodesic maps

@ minimal surfaces

@ holomorphic maps between Kéhler manifolds
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Harmonic maps into CAT(x) spaces

Today we consider maps

u:¥ — (X,d)where

@ ¥ is a Riemann surface _
@ (X, d) is a compact locally CAT (k) space: &——%roleﬁlc

Spast
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Harmonic maps into CAT(x) spaces

Today we consider maps

u:¥ — (X,d)where

@ Y is a Riemann surface
@ (X, d) is a compact locally CAT (k) space:
o Generalizes notion of sectional curvature < k. K)D
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Harmonic maps into CAT(x) spaces

Today we consider maps

u:¥ — (X,d)where

@ X is a Riemann surface
@ (X, d) is a compact locally CAT (k) space:
@ Generalizes notion of sectional curvature < k.
e Defined via comparison triangles:

) QQ“ (£
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Harmonic maps into CAT(x) spaces

Definition (Korevaar-Schoen)
Letu: Q c C — (X, d). For u € L2(Q, X), we let

vy . d?(u(2), u(Q))
el(z): /am(z) de.

- 2me €
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Harmonic maps into CAT(x) spaces

Definition (Korevaar-Schoen)
Letu: Q c C — (X, d). For u € L2(Q, X), we let

vy . d?(u(2), u(Q))
el(z): /am(z) de.

- 2me €

Then the energy of u is defined

E[u]:= sup Iimsup/fzqs(z)ie‘i('z)dxdy.

]S CgO(Q) e—0
#€[0,1]
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Harmonic maps into CAT(x) spaces

If E[u] < oo then there exists a function e¥ € L'(Q,R) such that

e(z)dxdy — eY(z)dxdy (weakly as measures).
=
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Harmonic maps into CAT(x) spaces

If E[u] < oo then there exists a function e¥ € L'(Q,R) such that

e(z)dxdy — eY(z)dxdy (weakly as measures).

Definition

A map u: Q — Xis harmonic if it is locally energy minimizing.
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Motivation - Uniformization

@ Uniformization Theorem For Riemann Surfaces [Koebe,
Poincaré]

Every simply connected Riemann surface is conformally
equivalent to the open disk, the complex plane, or the
Riemann sphere.
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Motivation - Uniformization

@ Uniformization Theorem For Riemann Surfaces [Koebe,
Poincaré]

Every simply connected Riemann surface is conformally
equivalent to the open disk, the complex plane, or the
Riemann sphere.

@ A consequence:

Every smooth Riemannian metric g defined on a closed
surface S is conformally equivalent to a metric of constant
Gauss curvature.
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Non-smooth Uniformization

@ Measurable Riemann Mapping Theorem
[Moorey ‘38, Ahlfors-Bers ‘60]

Let i : C — C be an L function with ||u||;« < 1. Then
there exists a_unigue homeomorphism f : C — C such that

0:1(2) — u(2)0f(2). <— ol Asorbon

—_— T

The dilatation of f at z is H(z) = 12 & semelriz e
 ———
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Non-smooth Uniformization

Other non-smooth uniformization results:
@ Reshetnyak ‘93

@ Bonk-Kleiner ‘02
@ Rajala ‘17

@ Lytchak-Wenger ‘20
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Non-smooth Uniformization

Other non-smooth uniformization results:
@ Reshetnyak ‘93

@ Bonk-Kleiner ‘02
@ Rajala ‘17

@ Lytchak-Wenger ‘20

We use global existence and branched covering results to
show:
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Non-smooth Uniformization

Other non-smooth uniformization results:
@ Reshetnyak ‘93

@ Bonk-Kleiner ‘02
@ Rajala ‘17
@ Lytchak-Wenger ‘20
We use global existence and branched covering results to

show:

@ For (S, d) a locally CAT (k) sphere, there exists a harmonic
homeomorphism h : S? — (S, d) which is

¢ Q,\MO\)? US‘\QU('IIOL (M Korumar-m iuﬁb)
- L’W\\m(‘vme (tr wad L Spas w)
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Global Existence

Theorem (B.-Fraser-Huang-Mese-Sargent-Zhang, ‘20)

Let Y be a compact Riemann surface and (X, d) be a compact,
locally CAT (k) space. Let ¢ : ¥ — X be a finite energy,
continuous map. Then either:

@ there exists a harmonic map u : ¥ — X homotopic to ¢
or

@ there exists an almost conformal harmonic map
v:S2 — X. . \ - n
Wh den T we \‘MMJM‘L\H ?i AT INEYY W “
E“Q""; f > 0 MMM‘()MSW\ Yfm 37' o \lb‘h»h
\ m‘;a{t& S o e d‘ﬁml\
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Global Existence

Theorem (B.-Fraser-Huang-Mese-Sargent-Zhang, ‘20)

Let > be a compact Riemann surface and (X, d) be a compact,
locally CAT (k) space. Let ¢ : ¥ — X be a finite energy,
continuous map. Then either:

@ there exists a harmonic map u : ¥ — X homotopic to ¢
or

@ there exists an almost conformal harmonic map
v:S? - X.

What's missing for a uniformization theorem?

=
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Global Existence

@ Generalizes Sacks-Uhlenbeck existence of minimal two
spheres.

No PDE available.

Exploits local convexity properties of CAT(x) spaces.
Existence and regularity of Dirichlet solutions required.
Produce harmonic map via harmonic replacement.
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Local analysis

Definition
We will say a harmonic map u : ¥ — (X, d) from a Riemann

surface into a locally CAT(x) space is non-degenerate if, at
every point, infinitesimal circles map 1o Infinitesimal ellipses.

(That is, tangent maps of u do not collapse along any ray.)
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Local analysis

Theorem (B.-Mese ‘20)

A proper, non-degenerate harmonic map from a Riemann
surface to a locally CAT(x) surface is a branched cover.
E—
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Alexandrov Tangent Cones

Definition

Given a geodesic space (X, d), the Alexandrov Tangent Cone
of X at q is the cone over the space of directions £y given by

TgX :=10,00) x &/ ~
with metric

5((s, 1) (1, 2l)) = £ + 8% — 2st cos([11], [12).
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Alexandrov Tangent Maps

Definition
Letu: D — X be a harmonic map into a CAT (k) space (X, d).
Let

log, : (X,dy) = (TgX,9)

such that log,.(q') := (d,(q.q'), [vg])- Then for maps u, which
converge to a tangent map of u, the maps

log, oly : D — TgX

converge to what is called an Alexandrov tangent map of u.
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@ In general, tangent cones need not be well behaved. We

prove: H, (s, 4) B C)(TU‘-) sorha & Haa
P adic (me W o Ami’l K\
T‘]"S h Q(w;‘k d, Ve - khy

@ In general, Alexandrov tangent maps need not be
harmonic. We prove:

f w:E (k) hermmi ¥
d (4 bolly CATE) ki Tho
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Key points

Kuwert classified homogeneous harmonic maps from C into an
NPC cone (C, ds?) where

ds? = 32| z|20-P)dz?. @e)

For a non-degenerate, harmonic u, tangent maps are thus of
the form

if k =0,

cz“/ﬁwitha/BGN,
_ 1
(&)= 0 iz ki) o<k <t
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Application: Almost conformal harmonic maps

A non-trivial almost conformal harmonic map u : ¥ — (S, d)
from a Riemann surface to a locally CAT(x) surface is
non-degenerate.

§ 1 52— (8d) wh
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Application: Uniformization

Theorem (B.-Mese ‘20)
If (S, d) is a locally CAT(x) sphere, then there exists a map
h:S? — (S, d) such that
@ h is an almost conformal harmonic homeomorphism.
@ handh=' are 1-quasiconformal.
@ his unique up to a Médbius transformation.

@ the energy of h is twice the Hausdorff 2-dimensional
measure of (S, d).

Christine Breiner, Fordham University Harmonic Maps into CAT (k) spaces



Application: Uniformization

@ There exists a finite energy map.

cavUF

@ Use global existence and local analysis to find almost
conformal, harmonic branched cover u.

@ Use u to define an equivalence relation on S? and a
complex structure on the quotient space Q. .)
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