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… a knotted springy wire cannot rest in stable equilibrium
without points of self-contact—an experimentally observable fact.

This fact leads to a rather curious “topologically constrained” variational problem;
what actually happens if one forms a knot in a piece of springy wire?

Experiments yield some beautiful curves with impressive symmetry …

— J. Langer & D. A. Singer 1984

Self-obstacle problem
The solution itself
defines the obstacle
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Lots of knots

Examples. Shoelace, rubber band, wires,
submarine communications cables,
protein molecules, solar coronal loops, …

Characteristics of these objects

• centerline: embedded curve, rectifiable, …
• curvature (→ bending energy [Bernoulli 1739])

• diameter: thickness (→ reach [Federer ’59])
• impermeability
• topology (→ knot type)

• twist
• further physical properties (shear, friction, …)
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Vocabulary

Knot is an embedded closed curve u : R/Z → R3.
Ambient isotopy deforms two curves continuously into each

other, without self-intersections or pulling-tight.

Knot classes are equivalence classes w. r. t. ambient isotopy.
Unknot or trivial knot is any element of the knot class

containing the round circle.

Knot classes are classified by the least number of crossings.
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A simple model for long slender objects

Examples. Shoelace, rubber band, wires,
submarine communications cables,
protein molecules, solar coronal loops, …

The centerline of these objects can be modeled by a curve u : I→ R3.

Bending energy [D. Bernoulli, 1739]

E0(u) = 1
2

∫
I
k(s)2 ds, u ∈ H2

• Simplified model: ignoring twist
• Γ-limit of three-dimensional nonlinear elasticity [Mora & Müller ’03]

• Applications in models for cell filaments, textile fabrication
processes, computer graphics, …

• Gradient flow [Polden ; Dziuk, Kuwert, Schätzle ; Deckelnick & Dziuk ; Barrett,

Garcke, Nürnberg ; Bartels ; Dall’Acqua, Lin, Pozzi ; …] 4



Minimizing the bending energy within isotopy classes

Bending energy [D. Bernoulli, 1739]

E0(u) = 1
2

∫
I
k(s)2 ds, u ∈ H2

Aim. Find global minimizers within nontrivial knot classes.

Theorem [Langer & Singer ’85]

The circle is the only (local) minimizer of the bending energy in R3.

Consequence. No bending energy minimizers
within a nontrivial knot class. Limits of minimal
sequences belong to the weak H2-boundary.

Problem. In the case of the trefoil knot there is
a one-parameter family of such limits.

Strategy. Regularization by a self-avoiding functional that separates
different isotopy classes by infinite barriers. 5



Regularization by a self-avoiding functional

Variational problem [von der Mosel ’98]

E%(u) = 1
2

∫
I
k(s)2 ds+ %R(u) → min!

Also see [Gallotti & Pierre-Louis ’07; Sossinsky ’10; Gerlach et al. ’17]

• R is a self-avoiding functional impermeability
• Limit curves as % ↘ 0 are called elastic knots
• Existence of minimizers for any % > 0
• Computational challenge: strong forces related to bending
effects have to be compensated by repulsive forces related to R
to avoid self-intersections

• Consider a suitable gradient descent
• Smooth functional R = TP [Buck & Orloff ’95; Gonzalez & Maddocks ’99]
• Discrete H2 gradient flow [Bartels & R. ’18]
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Self-avoidance



Tangent-point energies

Modeling “thickness” by a smooth functional

TP(u) = 1
2qq

∫∫
R/Z×R/Z

dx dy
ru(x, y)q

, q > 2,

where ru(x, y) denotes the radius of circle tangential at u(y) and
intersecting in u(x). [Gonzalez & Maddocks ’99]

• TP is highly non-local, 1
ru(x,y)

x→y−−−→ k(y)
• self-avoiding property [Strzelecki & von der Mosel ’10]

• characterization of energy spaces [Blatt ’13] W2−1/q,q

• numerical advantage: smoothness, no “intrinsic terms”,
two-dimensional integration domain 7



Tangent-point energies

Modeling “thickness” by a smooth functional

TP(u) = 1
2qq

∫∫
R/Z×R/Z

dx dy
ru(x, y)q

, q > 2,

where ru(x, y) denotes the radius of circle tangential at u(y) and
intersecting in u(x). [Gonzalez & Maddocks ’99]

We have

ru(x, y) =
|u(x)− u(y)|2

2 dist(u(x), `(y))
=

|u(x)− u(y)|2

2 |u′(y) ∧ (u(x)− u(y))|

where `(y) = u(y) + Ru′(y), so

TP(u) = 1
q

∫∫
R/Z×R/Z

|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q
dx dy.
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The importance of being bi-Lipschitz

The bi-Lipschitz constant of an arclength parametrized curve
u : R/Z → R3 is defined via

biL(u) = sup
x,y∈R/Z, x 6=y

|x − y|
|u(x)− u(y)|

(≥ 1) .

Lemma (Uniform bi-Lipschitz estimate) [Blatt & R. ’15]
There is a uniform bound CM,q < ∞ such that if TP(u) ≤ M then

|x − y|R/Z ≤ CM,q |u(x)− u(y)| for all x, y ∈ R/Z.

 biL cannot be controlled merely by the Sobolev norm.
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The importance of being bi-Lipschitz

Lemma
There is a uniform bound CM,q < ∞ such that if TP(u) ≤ M then

|x − y|R/Z ≤ CM,q |u(x)− u(y)| for all x, y ∈ R/Z.

Corollary (Self-avoidance)
Let (uk)k∈N pointwise converge to a curve u∞ ∈ C0(R/Z,R3) with a
self-intersection: there are x, y ∈ R/Z, x 6= y with u∞(x) = u∞(y).
Then TP(uk) → ∞ as k→ ∞.

Proof. Assuming the contrary, we infer the existence of a constant
C < ∞ with 0 < |x − y|R/Z ≤ C |uk(x)− uk(y)|

k→∞−−−→ 0.
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The first variation

Theorem [Blatt & R. ’15]

TP is continuously differentiable on embedded W2−1/q,q-curves,

δ TP(u)[w] ≤ Cq(biLu)2q+2 ‖u′‖
q−1
L∞ ‖u′‖W1−1/q,q ‖w′‖W1−1/q,q .

If u, ϕ ∈ W2−1/q,q(R/Z,R3), q ∈ (2,∞), u embedded and parametrized
by arc-length with u′ ⊥ ϕ′

δ TP(u)[ϕ] = M0(u;u, ϕ) +M0(u;ϕ,u)− 2A0(u;u, ϕ)

where

M0(u; v,w) =
∫∫

R/Z×R/Z

|u′(y) ∧ (u(x)− u(y))|q−2

|u(x)− u(y)|2q
×

× 〈u′(y) ∧ (u(x)− u(y)) , v′(y) ∧ (w(x)− w(y))〉 dx dy,

A0(u; v,w) =
∫∫

R/Z×R/Z

|u′(y) ∧ (u(x)− u(y))|q

|u(x)− u(y)|2q+2
×

× 〈v(x)− v(y),w(x)− w(y)〉 dx dy. 10



Numerical scheme



Approximating elastic knots

Prescribing arclength parametrization |u′| ≡ 1 gives k = |u′′|.

We perform a discretization of the H2 gradient flow

(ut, φ)H2 = −(u′′, φ′′)L2 − %δ TP(u)[φ] for all φ ∈ H2, φ′ ⊥ u′

• subject to initial and boundary conditions (periodicity),
• incorporating the linearized arc-length condition u′t ⊥ u′,
• based on piecewise cubic finite elements.

Theorem (Stability) [Bartels & R. ’18]
The corresponding semi-discrete scheme produces a sequence
(uk)k=0,...,L such that

• the energy E(uk) is decreasing and
• the arclength violation error

∥∥|[uk]′|2 − 1
∥∥
L∞ is unconditionally

bounded by the time step size.
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Approximating elastic knots

31 41 51 52 61 62 63

71 72 73 74 75 76 77

Which of these are global minimizers of E% within their knot class?

Elastic knots (i.e., limits of these minimizers as % ↘ 0) are (likely to be)

• circular for BB knots [Gallotti & Pierre-Louis ’07; Diao et al. ’20]

• planar for Figure-eight [Avvakumov & Sossinsky ’14; Bartels & R. ’18]

Question. Are elastic knots always planar or spherical?
Possibly not [Avvakumov & Sossinsky ’14]
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BB knots

bridge number minimal number of local minima of 〈u, ν〉 over ν ∈ S2

braid index minimal number of strands required in a circular
representation of the knot class

A knot class is BB if bridge index = braid index.

• All torus knots; 85, 810, 816–821, 916
• 33 knots with 10 crossings, 17 with 11, 119 with 12

Theorem [Diao, Ernst, R. ’20]

The number of BB knots
with a given crossing
number n grows
exponentially with n.

[Bartels & R. ’18]
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BB knots — heuristics

Let u : R/Z → R3 be embedded, BB, and parametrized by arclength.

E%(u) ≥
∫
R/Z

|u′′(s)|2 ds ≥
(∫

R/Z
|u′′(s)| ds

)2

= (TC(u))2 ≥ (2πbridge)2

On the other hand, we may find an admissible comparison curve ũ
close to the braid-times covered circle with

E%(ũ) ≤
∫
R/Z

|ũ′′(s)|2 ds︸ ︷︷ ︸
≤(2πbraid)2+O(ϑ2/3)

+O(ϑ2/3).

Assuming that u is the global minimizer, we find that

E%(u) = (2πbraid)2 +O(ϑ2/3).

If % ↘ 0 we find that u has constant curvature.

14



Symmetric elastic knots

Let Csymm =
{
u ∈ H2(R/Z,R3)

∣∣ |u′| = 1,u ∈ K ∩ S
}
for some isotopy

class K and a symmetry group S .

• Proceeding as before, we consider a sequence of minimizers as
% ↘ 0.

• Due to the principle of symmetric criticality [Palais ’79] these are
critical points of E% for % > 0.

• The limit curve is called a symmetric elastic knot.

Theorem [Gilsbach, R., von der Mosel ’21]

The (dihedrally) symmetric elastic trefoil is the
tangential pair of co-planar circles with exactly
one point in common.

We expect an analogous result to hold for general torus knot classes.
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Let’s twist!



A refined model for long slender objects

We attach a frame F ∈ H1(I, SO(3)) to the
curve such that F(s) = [t(s),b(s),d(s)]
where
• t = u′/|u′| is the unit tangent,
• b and d = u′ × b are the directors
that track the twisting of the frame
about the centerline.

Elastic energy

E(u,b) = cb
2

∫
I
|t′(s)|2 ds+ ct

2

∫
I
(b′(s) · d(s))2 ds, u ∈ H2,b ∈ H1

Special case of a very general theory [Antman ; Maddocks et al. ; Audoly et
al. ; Starostin & van der Heijden ; Neukirch et al. ; Coleman & Swigon ; Goriely et al. ;

Singer et al. ; …]
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A refined model for long slender objects

We attach a frame F ∈ H1(I, SO(3)) to the
curve such that F(s) = [t(s),b(s),d(s)]
where
• t = u′/|u′| is the unit tangent,
• b and d = u′ × b are the directors
that track the twisting of the frame
about the centerline.

Elastic energy

E(u,b) = cb
2

∫
I
|t′(s)|2 ds+ ct

2

∫
I
(b′(s) · d(s))2 ds, u ∈ H2,b ∈ H1

Formal derivation from a general three-dimensional hyperelastic
model imposes cb ≥ 2ct [Mora & Müller ’03; Bartels ’19].
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A model for inextensible and impermeable rods

Let u ∈ H2(I,R3), b ∈ H1(I,R3).

Regularized energy

E%(u,b) =
cb
2

∫
I
|t′(s)|2 ds+ ct

2

∫
I
(b′(s) · d(s))2 ds+ %TP(u)

• Tangent-point functional TP prevents curves from leaving the
isotopy class.

• Computational challenge: strong forces related to bending /
twisting effects have to be compensated by tangent-point
functional to avoid self-intersections

• Existence of minimizers for cb > 0, ct ≥ 0, % ≥ 0
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Gradient descent

dtuk =
uk − uk−1

τ
denotes the backward difference quotient.

Fh and Eh are tangent spaces.

1. Choose an initial pair (uh,bh) ∈ Ah, a step size τ > 0, and let
k = 1.

2. Compute dtukh ∈ Fh[uk−1h ] s.th. for all wh ∈ Fh[uk−1h ]

(dtukh,wh)H2 + cb([ukh]′′,w′′
h ) + ε−1([ukh]′ · b

k−1
h ,w′

h · b
k−1
h )h

= ct
(
[Qhbk−1h ] · [uk−1h ]′′, [Qhbk−1h ] · [wh]′′

)
− %δ TP(uk−1h )[wh].

3. Compute dtbkh ∈ Eh[bk−1h ] s.th. for all rh ∈ Fh[bk−1h ].

(dtbkh, rh)H1 + ct([bkh]′, r′h) + ε−1([ukh]′ · bkh, [ukh]′ · rh)h

= ct
(
[Qhbk−1h ] · [ukh]′′, [Qhrh] · [ukh]′′

)
.

4. Stop the iteration if the difference quotients are too small
or set k→ k+ 1 otherwise.
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Stability result [Bartels, R. ’19]

Theorem (θ = 1, % = 0)
The algorithm is well defined and produces a sequence
(ukh,bkh)k=0,1,... such that for all L ≥ 0 we have

Ehε,0(uLh,bLh) + τ

L∑
k=1

(
‖dtukh‖2H2 + ‖dtbkh‖2H1

)
≤ Ehε,0(u0h,b

0
h).

The iteration is energy decreasing, convergent, and the unit-length
violation is controlled via

max
k=0,...,L

(
‖|[ukh]′|2 − 1‖L∞ + ‖|bkh|2 − 1‖L∞

)
≤ τc?Ehε,0(u0h,b

0
h),

where c? > 0 only depends on the metrics.
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As Riemannian as you can get



How to efficiently untangle cable spaghetti?

Problem. Parameter-dependent restriction on time step size

Idea. Consider an ODE based on a metric that allows for large
motions away from regions of almost self-contact.

• The space C of embedded curves is a Riemannian manifold
[Neuberger ’97; Michor & Mumford ’06; Heeren et al. ’14; …]

• Definition of a metric G inspired by R
(degenerating on non-embedded curves)

• Smooth repulsive energy E gives rise
to a field gradG(E).

Theorem [R. & Schumacher ’20]

The gradient gradG(E) is a well-defined, locally Lipschitz continuous
vector field on C. There is a unique short-time solution to the ODE

∂tut = −gradG(E)|ut .
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Summary

• identify global minimizers of bending or elastic energy within
knot classes

• rigorous results for two-bridge torus knots
• simulations based on robust numerical schemes

• future aspects
• extend the setting to higher dimensions
• consider the non-euclidean case (preferred curvature)
• bifurcation analysis?
• twisted trefoil

Thank you!

More information and Simulations at
https://www.tu-chemnitz.de/mathematik/harmonische_analysis/reiter/research/
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