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Regularity results for harmonic maps (k = 1), biharmonic maps (k = 2), and
polyharmonic maps (k ≥ 3). For u ∈ W k,2(M,N), M open, dimM = m, N closed
submanifold of some Rn.

Weak solutions are smooth are smooth if m ≤ 2k.

harmonic: Hélein, Grüter, ...
biharmonic: Chang/Wang/Yang, Wang
polyharmonic: G./Scheven

What if m > 2k?

Minimizers are smooth outside a closed set of dimension ≤ m− 2k − 1.

harmonic: Schoen/Uhlenbeck, Giquinta/Giusti
biharmonic: Wang
(polyharmonic: G., very partial results)

Stationary weak solutions are smooth outside a closed set of dimension ≤ m− 2k.

harmonic: Bethuel
biharmonic: Wang, Angelsberg, Struwe



Let π : E → M be a vector bundle over M . For any connection d + A on E, the
Euclidean norm of the curvature FA := dA + 1

2
[A,A] is invariant under pointwise

orthonormal changes of coordinates in the bundle fibres Ex. (“gauge invariance”)

Uhleneck’s gauge theorem. If A ∈ W 1,m/2, and �FA�Lm/2 < ε, there is a gauge
transformation g : M → SO(n) such that g−1(d+ A)g =: d+ Ω satisfies

δΩ = 0 and �Ω�W 1,m/2 ≤ C�FΩ�Lm/2 .



Conservation laws. Assume m = 2k.

Harmonic map type equations. (Rivière)

−Δu = Ω · du

Ω an so(n)-valued 1-form. If one can find A ∈ W 1,2 ∩ L∞(U,GGL(n)) and B ∈
W 1,2(U,Rn×n ⊗ ∧2R2 such that

dA− AΩ = −δB,

then the equation is equivalent to

d(∗Adu− (∗B) ∧ du) = 0.

Biharmonic map type equations. (Lamm/Rivière)

Δ2u = Δ�V, du�+ δ(w du) + �W, du�

where V ∈ W 1,2, w ∈ L2 and W ∈ W−1,2

If W = dη + F with F ∈ L4/3,1 and η ∈ L2 and η skew-symmetric, and if there are
A ∈ W 2,2 ∩ L∞(U,GL(n)) and B ∈ W 1, 4

3 (U,Rn×n ⊗ ∧2R4) for which

ΔdA+ (ΔA)V − (dA)w + AW = δB,

then the equation is equivalent to

δ
�
d(AΔu)− 2dAΔu+ΔAdu− Aw du+ dA�V, du� − Ad�V, du� − �B, du�

�
= 0.



Theorem (de Longueville/G.) Assume m ≥ 3, n ∈ N. Let coefficient functions
be given as

wk ∈ W 2k+2−m,2(B2m,Rn×n) for k ∈ {0, . . . ,m− 2},
Vk ∈ W 2k+1−m,2(B2m,Rn×n ⊗ ∧1R2m) for k ∈ {0, . . . ,m− 1}, where

V0 = dη + F,

η ∈ W 2−m,2(B2m, so(n)), F ∈ W 2−m, 2m
m+1

,1(B2m,Rn×n ⊗ ∧1R2m).

We consider the equation

Δmu =
m−1�

k=0

Δk�Vk, du�+
m−2�

k=0

Δkδ(wk du). (1)

For this equation, the following statements hold.

(i) Let

θ :=
m−2�

k=0

�wk�W 2k+2−m,2(B2m) +
m−1�

k=1

�Vk�W 2k+1−m,2(B2m)

+ �η�W 2−m,2(B2m) + �F�
W

2−m, 2m
m+1 ,1

(B2m)
.

There is θ0 > 0 such that whenever θ < θ0, there are a function A ∈ Wm,2 ∩
L∞(B1/4;GL(n)) and a distribution B ∈ W 2−m,2(B1/4,Rn×n ⊗ ∧2R2m) that solve

Δm−1dA+
m−1�

k=0

(ΔkA)Vk −
m−2�

k=0

(ΔkdA)wk = δB. (2)

(ii) A function u ∈ Wm,2(B1/2,Rn) solves (1) weakly on B1/4 if and only if it is a
distributional solution of the conservation law

0 = δ
�m−1�

�=0

(Δ�A)Δm−�−1du−
m−2�

�=0

(dΔ�A)Δm−�−1u

−
m−1�

k=0

k−1�

�=0

(Δ�A)Δk−�−1d�Vk, du�+
m−1�

k=0

k−1�

�=0

(dΔ�A)Δk−�−1�Vk, du�

−
m−2�

k=0

k−2�

�=0

(Δ�A)dΔk−�−1δ(wk du) +
m−2�

k=0

k−2�

�=0

(dΔ�A)Δk−�−1δ(wk du)

− �B, du�
�
. (3)

(Here dΔ−1δ means the identity map.)

(iii) Every weak solution of (1) on B2m is continuous on B1/16 if the smallness condition
θ < θ0 holds.




