Regularity questions for polyharmonic maps

Andreas Gastel (Essen)
Münster, 19.07.2021
partially based on joint work with Christoph Scheven, Andreas Nerf, Felix Zorn, and Frédéric Louis de Longueville
$u: M \rightarrow N \quad M, N$ R, an mads., compact,

$$
N \subseteq \mathbb{R}^{n}, \tilde{k} \quad \operatorname{dim} \mu=m
$$

harmonic maps are stationary points of

$$
E(n)=\frac{1}{2} \int_{M}|D n|^{2} d x
$$

here for simphaity $M=\Omega \subseteq \mathbb{R}^{m}$ bed domain

$$
\begin{aligned}
& N=S^{n} \subseteq \mathbb{R}^{n+1} \\
& u_{t}: \Omega \rightarrow S^{n}, u_{0}=n,\left.\frac{\partial}{\partial t}\right|_{t=0} n_{t}(x)=\varphi(x) \in \Gamma_{x} S^{n} \text {. } \\
& \sigma=\delta E\left(u_{j} \varphi\right):=\frac{d}{d+\left.\right|_{t=\sigma}} E\left(u_{t}\right)=\int_{\mu} D_{u} \cdot D_{\varphi} d x \\
& =-\int_{\mu} \Delta u \cdot \varphi d x \quad \forall \varphi \text { with } \varphi(x)=T_{x} 5^{n} \\
& \Rightarrow \Delta n \perp T s^{n}, \Delta_{n}=\lambda(x) u(x)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta u+\left|D_{n}\right|^{2} n=0
\end{aligned}
$$

$$
\Delta n-2 \operatorname{tr}\left(\Pi_{1}{ }_{0}{ }_{n}\right)\left(D_{n}, D_{n}\right)=O \text { for general } N \text {. }
$$

bi-homonic maps crit. points of $\left(u: M \rightarrow N \leq \mathbb{R}^{n+k}\right)$

$$
\begin{array}{ll}
E^{2}(n):=\frac{1}{2} \int_{\mu}\left|D^{2} u\right|^{2} d x \quad & \quad \text { ar } \int_{\mu}|\Delta n|^{2} d x, \\
\underbrace{\text { rom } \Omega \rightarrow S^{n}}_{D_{n} \#+D_{n}^{2}} & \text { or } \left.\int_{\mu}|\nabla D u|^{2} d x\right) \\
\underbrace{\left(\left|\Delta_{n}\right|^{2}+2\left|D^{2} n\right|^{2}\right.}_{D_{n} \# n+D^{3} n}+4 \underbrace{D D \cdot D \Delta u)}_{n} n=0
\end{array}
$$

(extrinsically)
polyharmonic maps crit. pts. of

$$
\begin{gathered}
E^{k}(n)=\frac{1}{2} \int\left|D^{k} u\right|^{2} d x \\
\Delta^{k} n+\left(\sum_{j=1}^{n} D^{j} u \not D^{2 k-j} n\right) n=0
\end{gathered}
$$

natural Cobbler 2 space for that problem:

$$
\begin{aligned}
W^{k, 2}(\Omega, N)= & \left\{u \in L^{2}\left(\Omega, \mathbb{R}^{n+\tilde{k}}\right): u(x) \in N \text { a.e. } x,\right. \\
& \left.D^{j} u \in L^{2} \text { for } 1 \leq j \leq k\right\}
\end{aligned}
$$

Hélein'strich (Evans'trick) $\Delta u+\left|D_{u}\right|^{2} n=0$
rewrite that as

$$
E L^{2}
$$

$$
\Delta u^{k}+\sum_{j}(n^{k} \nabla_{u^{j}}^{j}-\underbrace{u^{j} \nabla_{u}^{k}}) \cdot \overbrace{u_{u}^{j}}^{u}
$$

$$
\begin{aligned}
& =\sigma
\end{aligned}
$$

Regularity results for harmonic maps $(k=1)$, biharmonic maps $(k=2)$, and polyharmonic maps $(k \geq 3)$. For $u \in W^{k, 2}(M, N)$, M open, $\operatorname{dim} M=m, N$ closed submanifold of some \mathbb{R}^{n}.

Weak solutions are smooth are smooth if $m \leq 2 k$.
harmonic: Hélein, Grüter, ...
biharmonic: Chang/Wang/Yang, Wang
polyharmonic: G./Scheven

What if $m>2 k$?

Minimizers are smooth outside a closed set of dimension $\leq m-2 k-1$.
harmonic: Schoen/Uhlenbeck, Giquinta/Giusti
biharmonic: Wang
(polyharmonic: G., very partial results)

Stationary weak solutions are smooth outside a closed set of dimension $\leq m-2 k$.
harmonic: Bethuel
biharmonic: Wang, Angelsberg, Struwe

Let $\pi: E \rightarrow M$ be a vector bundle over M. For any connection $d+A$ on E, the Euclidean norm of the curvature $F_{A}:=d A+\frac{1}{2}[A, A]$ is invariant under pointwise orthonormal changes of coordinates in the bundle fibres E_{x}. ("gauge invariance")

Uhleneck's gauge theorem. If $A \in W^{1, m / 2}$, and $\left\|F_{A}\right\|_{L^{m / 2}}<\varepsilon$, there is a gauge transformation $g: M \rightarrow S O(n)$ such that $g^{-1}(d+A) g=: d+\Omega$ satisfies

$$
\delta \Omega=0 \quad \text { and } \quad\|\Omega\|_{W^{1, m / 2}} \leq C\left\|F_{\Omega}\right\|_{L^{m / 2}}
$$

apply it on $u_{2} T^{\prime} N$
on $A=\left(\left\langle e_{\alpha}, d e_{\beta}\right\rangle\right)_{\alpha \beta}$

Conservation laws. Assume $m=2 k$.

Harmonic map type equations. (Rivière)

$$
-\Delta u=\Omega \cdot d u
$$

Ω an $\operatorname{so}(n)$-valued 1-form. If one can find $A \in W^{1,2} \cap L^{\infty}(U, G G L(n))$ and $B \in$ $W^{1,2}\left(U, \mathbb{R}^{n \times n} \otimes \wedge^{2} \mathbb{R}^{2}\right.$ such that

$$
d A-A \Omega=-\delta B,
$$

then the equation is equivalent to

$$
d(* A d u-(* B) \wedge d u)=0
$$

Biharmonic map type equations. (Lamm/Rivière)

$$
\Delta^{2} u=\Delta\langle V, d u\rangle+\delta(w d u)+\langle W, d u\rangle
$$

where $V \in W^{1,2}, w \in L^{2}$ and $W \in W^{-1,2}$
If $W=d \eta+F$ with $F \in L^{4 / 3,1}$ and $\eta \in L^{2}$ and η skew-symmetric, and if there are $A \in W^{2,2} \cap L^{\infty}(U, G L(n))$ and $B \in W^{1, \frac{4}{3}}\left(U, \mathbb{R}^{n \times n} \otimes \wedge^{2} \mathbb{R}^{4}\right)$ for which

$$
\Delta d A+(\Delta A) V-(d A) w+A W=\overline{\delta B}
$$

then the equation is equivalent to

$$
\delta[d(A \Delta u)-2 d A \Delta u+\Delta A d u-A w d u+d A\langle V, d u\rangle-A d\langle V, d u\rangle-\langle B, d u\rangle]=0
$$

Theorem (de Longueville/G.) Assume $m \geq 3, n \in \mathbb{N}$. Let coefficient functions be given as

$$
\begin{aligned}
w_{k} & \in W^{2 k+2-m, 2}\left(B^{2 m}, \mathbb{R}^{n \times n}\right) \quad \text { for } k \in\{0, \ldots, m-2\}, \\
V_{k} & \in W^{2 k+1-m, 2}\left(B^{2 m}, \mathbb{R}^{n \times n} \otimes \wedge^{1} \mathbb{R}^{2 m}\right) \quad \text { for } k \in\{0, \ldots, m-1\}, \text { where } \\
V_{0} & =d \eta+F, \\
\eta & \in W^{2-m, 2}\left(B^{2 m}, \text { so }(n)\right), \quad F \in W^{2-m, \frac{2 m}{m+1}, 1}\left(B^{2 m}, \mathbb{R}^{n \times n} \otimes \wedge^{1} \mathbb{R}^{2 m}\right)
\end{aligned}
$$

We consider the equation

$$
\begin{equation*}
\Delta^{m} u=\sum_{k=0}^{m-1} \Delta^{k}\left\langle V_{k}, d u\right\rangle+\sum_{k=0}^{m-2} \Delta^{k} \delta\left(w_{k} d u\right) \tag{1}
\end{equation*}
$$

For this equation, the following statements hold.
(i) Let

$$
\begin{gathered}
\theta:=\sum_{k=0}^{m-2}\left\|w_{k}\right\|_{W^{2 k+2-m, 2}\left(B^{2 m}\right)}+\sum_{k=1}^{m-1}\left\|V_{k}\right\|_{W^{2 k+1-m, 2}\left(B^{2 m}\right)} \\
+\|\eta\|_{W^{2-m, 2}\left(B^{2 m}\right)}+\|F\|_{W^{2-m, \frac{2 m}{m+1}, 1}\left(B^{2 m}\right)} .
\end{gathered}
$$

There is $\theta_{0}>0$ such that whenever $\theta<\theta_{0}$, there are a function $A \in W^{m, 2} \cap$ $L^{\infty}\left(B_{1 / 4} ; G L(n)\right)$ and a distribution $B \in W^{2-m, 2}\left(B_{1 / 4}, \mathbb{R}^{n \times n} \otimes \wedge^{2} \mathbb{R}^{2 m}\right)$ that solve

$$
\begin{equation*}
\Delta^{m-1} d A+\sum_{k=0}^{m-1}\left(\Delta^{k} A\right) V_{k}-\sum_{k=0}^{m-2}\left(\Delta^{k} d A\right) w_{k}=\delta B \tag{2}
\end{equation*}
$$

(ii) A function $u \in W^{m, 2}\left(B_{1 / 2}, \mathbb{R}^{n}\right)$ solves (1) weakly on $B_{1 / 4}$ if and only if it is a distributional solution of the conservation law

$$
\begin{align*}
& 0=\delta\left[\sum_{\ell=0}^{m-1}\left(\Delta^{\ell} A\right) \Delta^{m-\ell-1} d u-\sum_{\ell=0}^{m-2}\left(d \Delta^{\ell} A\right) \Delta^{m-\ell-1} u\right. \\
& \quad-\sum_{k=0}^{m-1} \sum_{\ell=0}^{k-1}\left(\Delta^{\ell} A\right) \Delta^{k-\ell-1} d\left\langle V_{k}, d u\right\rangle+\sum_{k=0}^{m-1} \sum_{\ell=0}^{k-1}\left(d \Delta^{\ell} A\right) \Delta^{k-\ell-1}\left\langle V_{k}, d u\right\rangle \\
& \quad-\sum_{k=0}^{m-2} \sum_{\ell=0}^{k-2}\left(\Delta^{\ell} A\right) d \Delta^{k-\ell-1} \delta\left(w_{k} d u\right)+\sum_{k=0}^{m-2} \sum_{\ell=0}^{k-2}\left(d \Delta^{\ell} A\right) \Delta^{k-\ell-1} \delta\left(w_{k} d u\right) \\
& \quad-\langle B, d u\rangle] . \tag{3}
\end{align*}
$$

(Here $d \Delta^{-1} \delta$ means the identity map.)
(iii) Every weak solution of (1) on $B^{2 m}$ is continuous on $B_{1 / 16}$ if the smallness condition $\theta<\theta_{0}$ holds.
\mathbb{R}^{n}

problon for A -valueg
"monontonicity termala"

$$
\begin{aligned}
& \rho^{2-m} \int_{B_{\rho}\left(x_{0}\right)}|D u|^{2} d x \leq C \\
& \rho^{4-m} \int_{\beta_{\rho}\left(x_{0}\right)}\left|D^{2} u\right|^{2} d x \leq C+\ldots \\
& \left|D^{3} u\right|^{2} d x \quad \text { Simon } B \operatorname{la} x t \text { a } \leq 20 .
\end{aligned}
$$

