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In differential geometry we are interested in classifying,
distinguishing or identifying spaces i.e. manifolds.
This is hard because manifolds are complicated objects.
We use geometric tools such as metrics to measure geometric
quantities such as distance, angles etc. All smooth manifolds
admit (infinitely) many metrics.
Manifolds with metrics are the objects of Riemannian geometry
which is more concrete and better understood than differential
geometry. Is it ok to replace differential geometry with
Riemannian geometry?
Not unless we have god-given metrics.
Finding canonical metrics motivates a lot of what we do in
Riemannian geometry and it fuels some of what I am going to
say today.
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Riemann surfaces
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Example: Riemann surfaces have a god-given metric: “the”
constant scalar curvature one.
Uniformization ensures such metrics always exist.
They are not always unique but are unique up to automorphism.
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“the”
constant scalar curvature one.
Uniformization ensures such metrics always exist.
They are not always unique but are unique up to automorphism.
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Example: Riemann surfaces have a god-given metric: “the”
constant scalar curvature one.

Uniformization ensures such metrics always exist.
They are not always unique but are unique up to automorphism.
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Example: Riemann surfaces have a god-given metric: “the”
constant scalar curvature one.
Uniformization ensures such metrics always exist.

They are not always unique but are unique up to automorphism.
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Example: Riemann surfaces have a god-given metric: “the”
constant scalar curvature one.
Uniformization ensures such metrics always exist.
They are not always unique

but are unique up to automorphism.
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constant scalar curvature one.
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They are not always unique but are unique up to automorphism.
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Kähler manifolds

Our objects of interest for today’s talk are Kähler manifolds.
These sit at the intersection of Complex Geometry, Riemannian
Geometry and Symplectic geometry.
(X ,g ,J), g Riemannian metric, J :TX →TX complex structure
is said to be Kähler if :

g(J ·,J ·)= g(·, ·);
ω(·, ·) := g(·,J ·) is a non-degenarate, closed 2-form. Such
2-forms are called symplectic.

The formula above shows that g +J =⇒ ω but ω+J =⇒ g and
ω+g =⇒ J

All Riemann surfaces and algebraic smooth varieties in CPn are
Kähler. So there are plenty of examples.
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Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.
The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.
The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function.

Not every function works in
general.
The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.

The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.
The set of such Kähler forms is called the Kähler class.

Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.
The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function.

It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Kähler classes

Given a Kähler manifold with a Kähler form ω we can make
infinitely many other Kähler forms:

ω+ id∂ϕ

where ϕ :X →C is a function. Not every function works in
general.
The set of such Kähler forms is called the Kähler class.
Metrics corresponding to a Kähler class are parametrised by a
function. It is much easier to find a god-given function than a
god-given symmetric positive 2-tensor.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

A question and an answer

Given (X ,g ,J ,ω) Kähler, what is the “best” metric in the Kähler
class of ω?
Calabi introduced an energy for Kähler metrics: it’s norm of the
Riemannian curvature:

C (ω′)=
∫
X
|Riemg(J ,ω′)|2

The best metric in a Kähler class is a minimiser for Calabi’s
energy.
All Kähler metrics of constant scalar curvature (cscK) are
minimisers for Calabi’s energy.
When Aut(X ,g ,J ,ω)= {id }, which is the generic situation,
minimisers for Calabi’s energy in a Kähler class are exactly cscK
metrics.
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Context

The existence problem for constant scalar curvature Kähler
(cscK) metrics on compact manifolds has dominated Kähler
geometry in the past 30 years. It is a difficult problem and
remains opens.
We have known for some time such metrics do not always exist.
(’57 Matsushima)
It took Kähler geometers a long time to find a criterium for
existence.
YTD conjecture: A Kähler manifold admits a cscK metric ⇐⇒
it is K-polystable.
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Motivation

Uniqueness for compact Kähler metrics on the other hand has
been settled for more than 10 years. When they exist, cscK
metrics are unique up to automophisms. (’00 Donaldson, ’08
Chen-Tian).
Even if one is interested only in the compact case, it is useful to
understand the non-compact case. Let me explain why.
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Bubbles

The cscK condition in a Kähler class can be translated into a
PDE. It is a non-linear PDE.
We have no general methods to solve non-linear PDE’s but
approaches tend to fall into 2 families.

Variational methods. Solutions are critical points on a function
(on a space of functions). The cscK problem falls easily into this
because of the Calabi Energy.
Continuity methods. We find a path from the PDE we care
about to a PDE we can solve and try to follow solutions along
the path. The path of solutions doesn’t always converge.
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Bubbles

There are many instances in geometry where hard problems were
solved by considering clever continuity methods.

Using either method, even if there isn’t convergence we can
sometimes get information. Particularly if we can control how
divergence occurs. This was observed by Uhlenbeck who
discovered bubbling.
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Bubbles for the cscK problem

Existence results for cscK metrics come from continuity methods
which cannot converge in the unstable case. What happens
then?

The methods in that case yield (divergent) sequences of metrics.
Sometimes, when appropriately rescaled around the right points
these metrics converge to non-compact smooth Kähler manifolds
which are called bubbles.
These bubbles are Kähler Ricci-flat Krf i.e. have zero Ricci or
more generally Kähler scalar-flat Ksf i.e. have zero scalar.
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The methods in that case yield (divergent) sequences of metrics.
Sometimes, when appropriately rescaled around the right points
these metrics converge to non-compact smooth Kähler manifolds
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Krf case

Non-compact Krf metrics were first publicly introduced in Yau’s
’79 ICM address.
Tian-Yau: There are complete Krf metrics on some
complements of divisors in algebraic varieties.

Theorem (Joyce)

Let Γ be a discrete subgroup of SU(m) acting freely with isolated
fixed points on Cm. Then there is a unique Krf metric on the minimal
resolution of Cm/Γ which is ALE.
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The above theorem contains a uniqueness result.
ALE fixes the asymptotic behaviour at infinity.

Definition
(Xm,g) is said to be ALE if there is

K ⊂X compact,
G discrete subgroup of SO(m),

a diffeomorphism π :X \K → (Rm \BR0(0))/G ,

such that ∣∣∣∇k (π∗g −geucl )
∣∣∣
geucl

≤R−m−k .
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Two Krf metrics on R4

The ALE condition is essential for uniqueness to hold. For example
on R4 there are two distinct Krf metrics

The Euclidean metric (ALE).
The Taub-NUT metric (ALF)

An ALF metric is one that looks like a circle fibration over R3 at
infinity.

Definition
(X 4,g) is said to be ALF if there is

K ⊂X compact,
G discrete subgroup of SO(3),

a fibration π :X \K → (R3 \BR0(0))/G ,
a connection 1-form η,

such that ∣∣g −π∗geucl −η⊗η
∣∣
g ≤R−2.
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ALE, F, G, H

Definition
(X 4,g) is said to be ALF if there is

K ⊂X compact,
G discrete subgroup of SO(3),

a fibration π :X \K → (R3 \BR0(0))/G ,
a connection 1-form η,

such that ∣∣g −π∗geuclη⊗η
∣∣
geucl

≤R−2.

The above definition can be modified for spaces that are asymptotic
fibrations over R2 or over R. This way one gets the definitions for
ALG or ALH.
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Cherchis-Kapustin conjectured that all complete Krf metrics
should be ALE,F, G or H.
Hein found a counter-example.
Chen-Chen later proved that the conjecture holds under an
assumption on curvature decay.
To sum up: in the non-compact case the uniqueness question
seems harder than existence.
In particular all the results we have on uniqueness, require some
restriction on behaviour at infinity.
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Toric sf surfaces

It is natural to generalise the rf condition into the sf one just as
the KE existence problem generalises to the cscK one.
Moreover, Donaldson settled the TYD conjecture on compact
toric surfaces. He did so by using a special continuity method.
In the process he conjectured that in the non-stable case bubbles
occur and they are non-compact Ksf toric surfaces.

Theorem (Abreu-S.)

Let (X 4,ω) be a strictly unbounded toric surface. Then (X ,ω)
admits a 2-parameter family of Ksf toric metrics which are complete
and essentially explicit.
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Toric sf surfaces

Theorem (Abreu-S.)

Let (X 4,ω) be a strictly unbounded toric surface. Then (X ,ω)
admits a 2-parameter family of Ksf toric metrics which are complete
and essentially explicit.

One of the metrics in the family is ALE. It was well know and
written down by Calderbank-Singer.
When c1(X )= 0 a 1-parameter subfamily of the family in [AS] is
Krf. In one case it was written down by Lebrun.
The metrics were also known in R4 where they were constructed
by Donaldson using an ansatz by Joyce.
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Toric sf surfaces: uniqueness among ALE

There is an interesting result in this setting which is due to Wright.

Theorem (Wright)

Let (X 4,ω) be a toric surface. An ALE toric Kähler metric on (X ,ω)
is isometric to the Calderbank-Singer metric.

This was proved using twistors.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric sf surfaces: uniqueness among ALE

There is an interesting result in this setting which is due to Wright.

Theorem (Wright)

Let (X 4,ω) be a toric surface. An ALE toric Kähler metric on (X ,ω)
is isometric to the Calderbank-Singer metric.

This was proved using twistors.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric sf surfaces: uniqueness among ALE

There is an interesting result in this setting which is due to Wright.

Theorem (Wright)

Let (X 4,ω) be a toric surface. An ALE toric Kähler metric on (X ,ω)
is isometric to the Calderbank-Singer metric.

This was proved using twistors.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric sf surfaces: uniqueness among ALE

There is an interesting result in this setting which is due to Wright.

Theorem (Wright)

Let (X 4,ω) be a toric surface. An ALE toric Kähler metric on (X ,ω)
is isometric to the Calderbank-Singer metric.

This was proved using twistors.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric sf surfaces: uniqueness

The result I want to discuss is a uniqueness result for the family
in [AS].
There are no assumptions on asymptotic behaviour.
In fact the metrics in [AS] have complicated asymptotic
behaviour.
It follows from some calculations on a preprint of Weber that
these metrics are neither ALE,F,G,H.

Vol(BR(0))'R3, |Riem| ≤CR−2.
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Toric sf surfaces: uniqueness

Theorem (S.)

Let (X 4,ω) be a strictly unbounded toric surface. Any toric Ksf
metric on (X ,ω) is equivariantly isometric to one of the metrics in
[AS].

I will give a definition for strictly unbounded toric surface later.
The manifold S2×R which is toric and unbounded is not strictly
unbounded.
Note that it follows from the theorem that any toric Ksf metric
is automatically complete because the metrics in [AS] are.
There is also a uniqueness result given asymptotic behaviour.
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Joyce’s Ansatz

A crucial ingredient both for the [AS] construction as well as in the
uniqueness result is the following ansatz due to Joyce.


ξ= (ξ1,ξ2) :U ⊂H→R2

detDξ> 0
∂2ξ
∂H2 + ∂2ξ

∂r2
+ 1

r
∂ξ
∂r = 0

 −→


gmetric onV ⊂R4

Ksf
toric



Here H= {H + ir ,r > 0}.

The PDE above is the PDE for harmonic functions on R3 which
depend only on height and the distance to the H-axis. (called
axi-symmetric).
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Toric geometry

Donaldson proved the TYD conjecture for toric Kähler surfaces
using the language and methods of toric geometry. In particular
he uses a parametrisation of Kähler metrics through a convex
function called the symplectic potential.
In the construction in [AS] and in the uniqueness result I am
discussing today we need the same tools.

Definition
A symplectic manifold (X 2m,ω) is toric if it admits an effective,
Hamiltonian action of Tm.
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Toric manifolds: moment maps

Hamiltonian actions have moment maps.
In our case this means we have µ :X → (Lie(Tm))∗ ≡Rm.

Theorem (Atiyah-Bott, Guillemin-Sternberg, Delzant)

Let (X 2m,ω) be a compact toric manifold. Then µ(X ) is a convex
polytope and it determines (X 2m,ω).
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Toric manifolds: moment polytopes

Theorem (Atiyah-Bott, Guillemin-Sternberg, Delzant)

Let (X 2m,ω) be a compact toric manifold. Then µ(X ) is a convex
polytope and it determines (X 2m,ω).

Studying toric manifolds comes down to understanding convex
polytopes.
Many questions in toric geometry can be translated into
combinatorial questions.
For instance, the stability condition for a toric manifold can be
translated into the positivity of a family of integrals of rational
piece-wise linear functions on µ(X ).
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Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.

It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.

The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.

Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,

1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Toric manifolds: moment maps

The image of moment map is called a moment polytope.
It is a special kind of convex polytope, of the form

{x ∈Rn : lk(x)= x ·νk−λk ≥ 0, k= 1, · · ·d},

where the νk are facet normals.
The Atiyah-Bott, Guillemin-Sternberg, Delzant theorem holds in
the non-compact setting as long as we assume proper moment
map µ and Tm has only finitely many fixed points.
Non-compact toric surfaces have polytopes with exactly 2
unbounded edges,1 and d .

We say that a non-compact toric surface is strictly non-compact
if ν1 and νd are independent.

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Examples: 2d

I 
I 

__ 
, __ , 

µ(x1,x2,x3)= x3

I 
I 

__ 
, __ , 

µ(z)= |z |2

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Examples: 2d

I 
I 

__ 
, __ , 

µ(x1,x2,x3)= x3

I 
I 

__ 
, __ , 

µ(z)= |z |2

Rosa Sena-Dias sf non-compact toric metrics on surfaces



sf non-compact
toric metrics on

surfaces

Rosa Sena-Dias

Examples: 4d

-1) 

R4 l-2 

2-1)
2-1)

BL O1-

5x R 

µ(z1,z2)= (|z1|2, |z2|2)

-1) 

R4 l-2 

2-1)
2-1)

BL O1-

5x R 
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More examples: 4d
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Symplectic potential

Guillemin discovered that all compact toric manifolds admit a
torus invariant Kähler structure (associated to JG ).
Abreu realised that there are infinitely many such structures and
learned how to parametrise them via a function on the moment
polytope.

{
Kähler metrics onX 2m

Tm− invariant

}
↔


u :µ(X )→R, convex
u−uG ∈C ∞(∏d

k=1 lk
)
det(Hess(u))> 0

and C ∞ onµ(X )


The function u is called the symplectic potential of the toric
metric g .

The function uG is determined by the moment polytope. It is
the symplectic potential of the Guillemin metric.
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Symplectic potential: the non-compact case

In the non-compact case, the Guillemin Kähler structure still
exists.
There is also a symplectic potential associated to invariant
Kähler structures. cf
Apostolov-Calderbank-Gauduchon-Tønnesen-Friedman.
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Abreu’s equation

For a Kähler toric metric gu, all metric quantities can be
expressed in terms of the symplectic potential u.

Abreu calculated the scalar curvature

scalgu =
m∑

i ,j=1

∂2uij

∂xi∂xj
,

where uij are the entries of the inverse of the Hessian of u.

The equation for constant scalar curvature becomes∑m
i ,j=1

∂2uij

∂xi∂xj
= c .
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Joyce’s ansatz in the toric language

To construct Ksf metrics in R4, Donaldson first translated Joyce’s
results into the language of toric geometry using symplectic
potentials.


ξ= (ξ1,ξ2) :U ⊂H→R2

detDξ> 0
∂2ξ
∂H2 + ∂2ξ

∂r2
+ 1

r
∂ξ
∂r = 0

 −→


u :V ⊂R2 →R,

convex
∂2uij

∂xi∂xj
= 0


The construction in [AS] really amounted to choosing the right
boundary behaviour for ξ so that the u−uG is smooth and the
resulting metrics are complete.
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Joyce’s ansatz in the toric language

In translating Joyce’s ansatz in the language of toric geometry,
Donaldson shows that the construction can be reversed


ξ= (ξ1,ξ2) :U ⊂H→R2

detDξ> 0
∂2ξ
∂H2 + ∂2ξ

∂r2
+ 1

r
∂ξ
∂r = 0

 ←→


u :V ⊂R2 →R,

convex
∂2uij

∂xi∂xj
= 0


The idea is is to use this fact together with our knowledge on
harmonic functions to show uniqueness.
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There is on the toric surface a reference toric Ksf metric due to
Calderbank-Singer which is ALE. We denote its symplectic
potential uALE
By the reverse of Joyce’s ansatz there is corresponding harmonic
ξALE , which we can calculate explicitly.
ξALE is not smooth, rather ξALE ' log(r)νk in the portion of ∂H
corresponding to the kth facet.
Let u denote the symplectic potential of a toric Ksf metric, and
ξ the corresponding harmonic function via Joyce’s ansatz.
The upshot is ξALE −ξ is now axi-symmetric harmonic and
smooth.
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(H ,r) coordinates

Donaldson/Joyce correspondence


ξ= (ξ1,ξ2) :U ⊂H→R2

detDξ> 0
∂2ξ
∂H2 + ∂2ξ

∂r2
+ 1

r
∂ξ
∂r = 0

 ←→


u :V ⊂R2 →R,

convex
∂2uij

∂xi∂xj
= 0


goes trough a coordinate change µ(X )→H= {H + ir ,r > 0}. To say
more I need to discuss this.

The moment polytope µ(X ) can be interpreted as a submanifold
of X with an induced metric gu |µ(X ).

The Abreu’s equation implies r = (detHess(u))−1/2 is harmonic
for gu |µ(X ).
There is a harmonic conjugate H such that (H ,r) are isothermal
coordinates for gu |µ(X ).
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I ' ------- -- I I 
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- - _,_ ,_ ~ - - - - ,_ I the ai correspond to the vertices of µ(X ) via (H ,r).

gu |µ(X ) =
∑2

i ,j=1u
ijdxi ⊗dxj =V (dH2+dr2), for some V .

This relation explains how to go from (H ,r) to polytope
coordinates and back.
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(H ,r) coordinates: example

-1) 

R4 l-2 

2-1)
2-1)

BL O1-

5x R 

Consider the Euclidean
metric on R4,

whose symplectic
potential is uALE =
x1 log(x1)+x2 log(x2).

We have r = (detHess(uALE ))
−1/2 =p

x1x2.

The induced metric and complex structure on the quarter plane
are the standard ones.
so that H is the usual harmonic conjugate of

p
x1x2;

i.e. H = x1−x2
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ξALE −ξ ∈C ∞

Because ξALE −ξ is harmonic it is enough to show it is bounded
to show it is smooth.
It follows from the Joyce/Donaldson correspondence that
ξ(H ,r)=Ou ◦µ(H ,r).

We have ξALE −ξ=OuALE ◦µALE (H ,r)−Ou ◦µ(H ,r),

and so there are two things varying. We break up the variation
into two variations.
We know well in toric geometry that OuALE −Ou is bounded
because both u and uALE are like uG on ∂µ(X ).
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ξALE −ξ ∈C ∞

As for ξALE −ξALE ◦µ◦µ−1
ALE , by using ξALE ' (log r)νi close to

]ai−1,ai [×{0}, what we need is

log

(
r ◦µ−1

r ◦µ−1
ALE

)
= log

(
γ

γALE

)

where
(∏d

k=1 lk
)
det(Hess(u))= γ−2 > 0 as before

r = (det(Hessu)−1/2 = γ(∏d
k=1 lk

)1/2
.

We also need to check that the jumping points for H are the
same for both metrics which follows from the fact that ai −ai−1
is not metric dependent.
This follows from a very toric argument relating the length of an
edge to the volume of 2 sphere on the toric manifold,
which in turn can be calculated in (H ,r) coordinates and is
proportional to ai −ai−1.
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The function f

There are still too many smooth axi-symmetric harmonic
functions to conclude.
The second idea is to use that the moment maps for both
metrics have the same image.
It follows from the smoothness of ξALE −ξ that µALE −µ vanish
to second order on ∂H.
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The function f

Lemma (Wright)

For any toric Ksf metric on (X ,ω), the function

f = µALE −µ
r2

is axi-symmetric harmonic on R5.

This means that f satisfies

∂2f

∂H2 + ∂2f

∂r2
+ 3
r

∂f

∂r
= 0.

This lemma is easy to prove but crucial.
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f is bounded

By normalising we may assume the moment polytope sits in the
angle determined by its two unbounded edges.

µ ·ν1 ≥ 0 µ ·νd ≥ 0.

This gives an upper bound on f ·ν1 and f ·νd
f ·ν1 ≤ µALE ·ν1

r2
.

But we know µALE explicitly and the above implies

f ·ν1 ≤ C
√
H2+ r2

r2
.

A Liouville theorem shows that f ·ν1 and f ·νd must be constant
(as they are bounded).
Because ν1 and νd are independent this then implies that f is
constant. Here are the 2 parameters.
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(H ,r) is bijective

It has been implicit throughout that (H ,r) :µ(X )→H.

It is vital that f be defined on R5 for the argument to work.
This was delicate
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Open problems

It would be great to see the metrics from [AS] appearing as
bubbles in Donaldson’s continuity method.
There is definitely room for improvement regarding uniqueness
results given asymptotic behaviour.
Higher dimensions is harder because we no longer have (H ,r)
coordinates. Perhaps the ALE case is doable?
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Thank you!
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