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3 SPHERICAL RANK RIGIDITY AND BLASCHKE MANIFOLDS

KRISHNAN SHANKAR∗, RALF SPATZIER∗∗, BURKHARD WILKING∗∗∗

Introduction

In this paper we define a notion of rank for closed manifolds with positive upper curvature

bound and prove a rigidity result for the same. More precisely, consider the following

definition. If not explicitly stated otherwise all geodesics are assumed to be parameterized

by arc length.

Definition. Let M be a complete Riemannian manifold with sectional curvature bounded

above by 1. We say that M has positive spherical rank if every geodesic γ : [0, π] → M has

a conjugate point at t = π.

By the Rauch comparison theorem we know that along any geodesic there cannot be a

conjugate point before π. The well known equality discussion implies that for any normal

geodesic c : [0, π] → M there exists a spherical Jacobi field i.e., a Jacobi field of the form

J(t) = sin(t)E(t) where E is a parallel vector field (see for instance [Chav93, Theorem

2.15]). This latter characterization is analogous to the notions of (upper) Euclidean rank and

(upper) hyperbolic rank studied by several people; see below for a more detailed description.

In this paper curvature refers to sectional curvature and is denoted by sec. The following

is the main result of the paper.

Theorem 1. Let Mn be a complete, simply connected Riemannian manifold with sec ≤ 1

and positive spherical rank. Then M is isometric to a compact, rank one symmetric space

i.e., M is isometric to Sn, CP
n
2 , HP

n
4 or CaP2.

Note that the condition of sec ≤ 1 is not really an obstruction; any manifold, and in

particular any compact manifold, admits a metric with upper curvature bound 1. So any

theorem in this class must necessarily include an additional assumption on the geometry of

the manifold. There are few general theorems about manifolds with sec ≤ 1; the main theo-

rem and Toponogov’s theorem mentioned in Section 2 are two theorems for such manifolds.

We do not know of any others.

Several notions of ‘rank’ have been studied for manifolds under suitable curvature assump-

tions. Historically rank was defined for symmetric spaces and referred to the dimension of
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an embedded flat torus. This evidently descends from the definition of rank for Lie groups.

In our paper we study a more recent notion of rank (also called the geometric rank) first

defined in [BBE85] for non-positively curved manifolds. According to [BBE85] a complete

Riemannian manifold with sec ≤ 0 has higher (Euclidean) rank if along every geodesic γ

there exists at least one parallel Jacobi field orthogonal to γ′. It follows that the 2-plane

spanned by this Jacobi field and γ′ is extremal. The following theorem was proved by W.

Ballmann ([Bal85]), and using completely different methods by K. Burns and R. Spatzier

([BS87]), building on previous work in [BBE85] and [BBS85]: Let Mn be a non-positively

curved complete manifold of finite volume. Suppose along every geodesic there exists at

least one parallel Jacobi field. Then the universal cover of M is either a symmetric space

or isometric to a Riemannian product.

The next result was for compact manifolds with sec ≤ −1 due to U. Hamenstädt; she

used a weaker notion of hyperbolic rank by only assuming that along every geodesic there

exists a Jacobi field J such that sec(J, γ′) = −1 i.e., J and γ′ span an extremal curvature

2-plane. She proved the following theorem (cf. [Ham90]): Let Mn be a compact manifold

with upper curvature bound −1 and hyperbolic rank at least 1. Then M is isometric to a

locally symmetric space. We will refer to this notion of rank as (upper) hyperbolic rank.

In order to exhibit the analogy of these results to the main theorem we restate it in a

slightly weaker form.

Corollary 2. Let Mn be a complete, simply connected Riemannian manifold with sec ≤ 1.

Suppose that along every geodesic γ, there exists a normal parallel vector field E such that

sec(E, γ′) = 1. Then Mn is isometric to a compact, rank one symmetric space.

Indeed the corollary is an immediate consequence of Theorem 1 as sin(t)E(t) is then a

Jacobi field along γ and consequently M has positive spherical rank.

Several questions remain open. For instance, one could turn the above definitions around

for (closed) manifolds with suitable lower curvature bounds and ask whether any rigidity

is possible. This is known to be false if the lower bound is zero but analogous questions

for sec ≥ −1 and sec ≥ 1 remain untouched. We refer the reader to Table 1 where some

of the known results are presented; the table is not meant to be a survey rather a point of

departure for further investigations. In this paper we only deal with the case of spherical

rank for upper curvature bound 1.

The paper is organized into three sections. In Section 1 we show that positive spherical

rank implies that the manifold is a so-called Blaschke manifold. A Blaschke manifold is a

Riemannian manifold with the property that its injectivity radius equals its diameter. Note

that the definition has no curvature assumptions. For an excellent and rather complete

treatment of Blaschke manifolds see [Bes78]. The study of these manifolds has a rich

history motivated by the following open problem.

Blaschke Conjecture. Let M be a Riemannian manifold such that injM = diamM .

Then M is isometric to a compact, rank one symmetric space (CROSS).
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Once we have established that M is Blaschke the remaining step may be regarded as

a special case of the Blaschke conjecture. In Section 2 we show that a Blaschke manifold

with upper curvature bound 1 and injectivity radius π must be isometric to a CROSS. This

latter result has already been proved by V. Rovenskii and V. Toponogov in [RT96]; they

prove this using comparison arguments. For the sake of completeness we present a shorter

proof whose arguments may be useful in other contexts. In the final section of the paper we

give an example, the Berger spheres, which shows that the conclusion of the main theorem

fails for a weaker notion of spherical rank, namely the analogue of Hamenstädt’s notion of

rank. More precisely, we show that there are non-symmetric, simply connected, compact

Riemannian manifolds with upper (respectively lower) curvature bound 1, such that along

every geodesic γ there exists a normal Jacobi field J with sec(γ′(t), J(t)) = 1 for all t.

It is a pleasure to thank Karsten Grove and Wolfgang Ziller for several helpful discussions.

1. Positive Spherical Rank implies Blaschke

Let M be a complete, simply connected Riemannian manifold with sec ≤ 1 and posi-

tive spherical rank. By assumption, every geodesic hits its first conjugate point at π and

therefore the diameter of M is bounded above by π. In order to show that M is a Blaschke

manifold we only have to verify that the injectivity radius is at least π since we always

have injM ≤ diamM . Since the conjugate radius of the manifold is π, it suffices to show

injM = conjM .

Consider the special case where M is even dimensional and positively curved. Then

by Klingenberg’s injectivity radius estimate injM = π, and hence M is Blaschke. This

observation, in fact, was the beginning for our investigations.

We now outline the argument for the general case. The starting point is the well-known

generalization [CE75, Lemma 5.6] of an injectivity radius estimate of Klingenberg [Klin61,

Lemma 4] that for M compact, injM is the smaller of conjM and half the length of a

shortest closed geodesic. We will argue by contradiction, and suppose that the length

of some closed geodesic is less than 2π. Under these assumptions, it follows from Morse

theoretic arguments that there exists a closed geodesic γ of length 2π and index 1.1 For the

actual argument it is important that γ satisfies a slightly stronger condition; see Lemma 1.4.

Moreover, we will show that γ is contained in a totally geodesic, isometrically immersed

2-sphere of constant curvature 1. The next step is to show that the same is true for all

geodesics in the manifold and hence all geodesics are closed. Then in Section 1.4 we will

show, by applying the index parity theorem [Wil01] that if all geodesics are closed, then

they all have length at least 2π. This contradiction finishes the proof that M is indeed a

Blaschke manifold.

1.1. Preliminaries.

First we state a useful generalization of Klingenberg’s long homotopy lemma due to U.

Abresch and W. Meyer [AM97].

1Throughout this paper we always mean index in the free loop space.
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Lemma 1.1 (Long Homotopy Lemma). Let M be a compact Riemannian manifold and

c a closed curve in M which is the union of at most two geodesic segments such that

l(c) < 2 conjM . Suppose c = c0 is homotopic to a point via a continuous family of rectifiable

closed curves ct, 0 ≤ t ≤ 1. Then some cs has length l(cs) ≥ 2 conjM .

Now we adapt the second comparison theorem of Rauch to get the next proposition. We

will need the following lemma in the proof.

Lemma 1.2. Let M be a complete manifold with sec ≤ 1, and let S2 denote the 2-sphere

of constant curvature 1. Suppose X is a normal Jacobi field along a geodesic b of length

at most π such that ‖X(0)‖ = 1 and 〈X ′,X〉 = 0. Let Y be a normal Jacobi field along a

geodesic in S2 such that ‖Y (0)‖ = 1 and Y ′(0) = 0.

Then ‖X(s)‖ ≥ ‖Y (s)‖ for 0 ≤ s ≤ π/2. Moreover, if ‖X(s1)‖ = ‖Y (s1)‖ for some

0 < s1 ≤ π/2, then sec(X(s), b′(s)) = 1 and ‖X(s)‖ = ‖Y (s)‖ for all 0 ≤ s ≤ s1 .

Proof. Since the upper curvature bound is 1, we see from Cauchy-Schwarz and straightfor-

ward differentiation that

‖X‖′′ + ‖X‖ ≥ 0.

Let a(s) be the function such that ‖X‖′′+a(s)‖X‖ = 0. Note that a(s) ≤ sec(X(s), b′(s)) ≤
1. By the Sturm comparison theorem, it follows that ‖X(s)‖ ≥ ‖Y (s)‖ on the closed interval

[0, π]. We refer to [doCar92, p. 238] for a Sturm comparison theorem with different initial

conditions. The same proof however applies equally well in our situation. Moreover if

‖X(s1)‖ = ‖Y (s1)‖, then a(s) = 1 for all s ≤ s1. In particular,

sec(X(s), b′(s)) = 1 for 0 ≤ s ≤ s1. �

An isometrically immersed surface (with piecewise smooth geodesic boundary) of constant

curvature 1 will be called a spherical slice.

Let M be a complete, simply connected manifold with sec ≤ 1. Suppose c is a geodesic

of length π between two points p

and q on M and suppose cs is a smooth variation of c by curves connecting p and q

such that l(cs) ≤ π for all s. We pick a curve cσ close to c and assume that cσ is not a

reparameterization of c.

Proposition 1.3. Given c and cσ as above, they span a totally geodesic spherical slice.

Proof. If we choose σ sufficiently small we can find a normal vector field Z(t) along c such

that cσ(t) = exp(Z(t)) after possibly reparameterizing cσ. We may assume ‖Z(t)‖ < π/2.

This yields a proper variation f(s, t) = exp(s ·Z(t)) of c. By construction, the curves ft(s)

(t fixed) are geodesics which in turn implies that the vector field Xt(s) = ∂f
∂t

is a Jacobi

field along ft(s). It should be clear that ft is not necessarily parameterized by arc length.

However, according to our conventions c is and thus ‖Xt(0)‖ = ‖c′(t)‖ = 1.

Let c̃ be a geodesic of length π on S2, the 2-sphere with constant curvature 1. Consider

the following variation of c̃,

g(s, t) = exp
(
s · ‖Z(t)‖ · Ẽ(t)

)
,
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where Ẽ is a unit parallel field along c̃ orthogonal to c̃′. Notice that gs(t) = g(s, t) is a

proper variation as well. Let Yt(s) =
∂g
∂t

be the vector field along the geodesics gt(s). Then

‖Yt(0)‖ =

∥∥∥∥
∂g

∂t
(0)

∥∥∥∥ = ‖c̃′(t)‖ = 1.

We would like to apply the Sturm comparison theorem to the vector fields Xt(s) and

Yt(s). To do this we need to estimate the derivatives of these vector fields. A straightforward

calculation yields

‖Yt(0)‖′ =
∂

∂s
(‖Yt(s)‖)s=0 = 0,

‖Xt(0)‖′ =
∂

∂s
(‖Xt(s)‖)s=0 = 0.

As always each of the Jacobi fields Yt and Xt can be decomposed into the sum of a normal

and a tangential Jacobi field along ft resp. gt. The tangential parts of the Jacobi fields are

given by mt s f
′
t(s) respectively by mt s g

′
t(s) with mt =

∂
∂t

log
(
‖Z(t)‖

)
. Since the geodesics

gt and ft have the same speed it follows from the previous lemma that the norm of the

normal part of Xt is bounded above by the norm of the normal part of Yt. Combining the

two statements we get ‖Xt(s)‖ ≥ ‖Yt(s)‖ and so

π ≤
∫

‖Yt(s)‖ dt ≤
∫

‖Xt(s)‖ dt

for all s. By construction equality holds at s = 1. Notice that this implies in particular

that cσ is a geodesic up to parameterization, as otherwise one could have replaced cσ by

a nearby curve of length < π. The equality discussion implies ‖Xt(s)‖ = ‖Yt(s)‖ for

s ∈ [0, 1]. This shows that the strip parameterized by f is intrinsically isometric to the

strip parameterized by g. Furthermore the equality discussion also shows that the ambient

curvature of the slice defined by f is 1 as well. By the Gauss Lemma we have the basic

relation

0 = sec intrinsic − sec ambient = 〈B(X1,X1), B(X2,X2)〉 − ‖B(X1,X2)‖2,

where X1 = ∂f
∂t

and X2 = ∂f
∂s

are linear independent vector fields on the slice. By con-

struction, the curves ft(s) (t fixed) are geodesics so B(X2,X2) = 0. Therefore, B(X1,X2)

vanishes as well. It remains to show that B(X1,X1) = 0. Notice that in the ’model’ slice

parameterized by g the geodesics of length π connecting the end points of c̃ pass through

every point of the slice. Since the two slices are intrinsically isometric the same holds for

the slice parameterized by f . Notice that these intrinsic geodesic have to be geodesics of

the ambient manifold as well because otherwise we could find in M nearby curves which

are strictly shorter. �

1.2. Existence of a closed geodesic of length at least 2π and index 1.

The next lemma is a consequence of the long homotopy lemma; the first part is well

known.
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Lemma 1.4. Let M be a complete, simply connected compact manifold with sec ≤ 1 and

injectivity radius less than π. Then there is a closed geodesic c : [0, ℓ] → M of length

ℓ ≥ 2 conjM ≥ 2π whose index in the free loop space of M is at most 1.

Furthermore there is no free homotopy cs(t) with s ∈ [0, 1] and t ∈ [0, ℓ] such that each

of the following statements is true.

(i) cs is a closed geodesic of length 2 conjM and c0 = c.

(ii) The index of the closed geodesic cs in the free loop space of M is at least 1, s ∈ [0, 1].

(iii) The index of the closed geodesic c1 is at least 2.

For the proof of the above lemma we will apply the standard degenerate Morse Lemma,

see for example [GM69].

Lemma 1.5. Let B be a manifold of dimension b, E : B → R a smooth proper function

and let p ∈ B be a critical point of E. Then we can find a neighborhood U of p and a map

x : U → V ⊂ Rb with x(p) = 0 such that

E = E(p)− x21 − . . .− x2λ + x2λ+1 + . . .+ x2b−d + h(xb−d+1, . . . , xb)

where λ denotes the index of p, d the nullity of p and h is a smooth function.

Notice that any critical point of E in U is necessarily contained in L := x−1(0 × Rd).

After replacing U by a smaller neighborhood we may assume that V is a bounded convex

set. For the proof of Lemma 1.4 we make the following observation: Suppose that λ > 0.

Let pi be a sequence of points converging to p with E(pi) < E(p), h(t) ∈ U a path of

critical points with E(h(t)) = E(p) and h(0) = p, t ∈ [0, 1]. Then there is a path hi(t)

with pi = hi(0), E(hi(t)) < E(p) such that hi(1) converges to h(1). In order to construct

hi we will identify U with V via x. Consequently we write pij instead of xj(p
i). First take

a path given by the straight segment from pi to another point qi with qij = pij for j ≥ 2

and |qi1| > ε, where ε > 0 is a number which we can chose independent of i. Next consider

the path from qi to q̃i := (qi1, 0, . . . , 0) given by a straight segment. Since pi converges to

0 it is easy to see that the energy E along this path stays strictly below E(p) for almost

all i. Next consider the path h̃i(t) = q̃i + h(t) from q̃i to q̃i + h(1) along which the energy

E is constant. Finally, along the straight line from h(1) + q̃i to h(1) + q̃i

i
the energy stays

strictly below E(p). Thus we may chose hi as the composition of these paths for almost all

i. Finally we can define hi as the point curve for the finitely many remaining i.

Proof of Lemma 1.4. In this proof all curves are parameterized on [0, 1]. As usual we con-

sider the energy functional on the free loop space of ΩM of M i.e., we define the energy of

a piecewise smooth loop c : [0, 1] → M as

E(c) := 1
2

∫ 1

0
‖ċ(t)‖2 dt.

For any value of e ∈ (0,∞) we let ΩM<e (respectively ΩM≤e ) denote the loops in ΩM of

energy < e (respectively ≤ e).
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By Klingenberg’s general injectivity radius estimate there is a closed geodesic of length

2 injM < 2π. Furthermore the long homotopy lemma tells us that there is no free null

homotopy of this geodesic contained in ΩM<e0 with e0 = 2(conjM)2. Consequently ΩM<e0

has at least two connected components.

We now assume, on the contrary, that the statement of the Lemma is false. The first step

is to verify that ΩM≤e0 is connected. In fact if ΩM≤e0 were not connected, then we could

find an ε > 0 such that ΩM<e0+ε is not connected either. Since the statement of the lemma

is assumed to be false, any closed geodesic of energy > e0 has index at least 2. Thus it

follows by the usual degenerate Morse theory argument (namely approximating E by Morse

functions) that the free loop space itself is not connected either. This is a contradiction as

M is simply connected. Hence, ΩM≤e0 is connected.

As usual given an e1 one can find partition 0 < t1 < · · · < tk < 1 of the unit interval such

that for all e ≤ e1 the sub level ΩM≤e is homotopically equivalent to the subset of broken

geodesics B≤e contained in ΩM≤e, whose points of non differentiability are points in the

partition. We put e1 = e0 + 1 and fix a sufficiently fine partition. Then B<e1 is a finite

dimensional submanifold and if we restrict the energy function to B<e1 , then the critical

point as well as the indices do not change. We have shown that B≤e0 is connected while

B<e0 is not.

Let C denote the set of closed geodesics of length 2(conjM) and put S = B<e0 ∪ C. In

other words S is obtained from B≤e0 by removing all non-critical points from the boundary.

Since B≤e0 is connected it is easy to see that S is connected as well.

Let S1 be an open and closed subset of B<e0 and suppose that neither S1 nor its com-

plement S2 := B<e0 \ S1 is void. Let S̄i denote the closure of Si in S. By construction

S̄1 ∪ S̄2 = S and S̄1 ∩ S̄2 is a nonempty subset of C. We claim that if c ∈ S̄1 ∩ S̄2 then

C0 ⊂ S̄1 ∩ S̄2 where C0 is the path connected component of c in C. Since the index of any

critical point in C is at least 1 this is an immediate consequence of the observation that we

made after Lemma 1.5.

Let C ′ ⊂ C denote the set of closed geodesics of index ≥ 2. By assumption each path

connected component can be represented by a geodesic of index ≥ 2. By the previous

argument S̄1∩ S̄2 has a nontrivial intersection with C ′. But this shows that S′ := B<e0 ∪C ′

is connected as well. Since all points in C ′ have index at least 2 this implies as before that

B<e0 is connected which is a contradiction. �

1.3. All geodesics in M are closed.

We will assume from now on that M is a complete, simply connected manifold with

sec ≤ 1 and positive spherical rank. In this subsection we want to prove that all geodesics

ofM are closed. There is nothing to prove ifM is Blaschke. Thus we may assume injM < π.

Then there is a geodesic γ satisfying the conclusion of Lemma 1.4. Using the existence of

γ as a starting point we will show that all geodesics are contained in a totally geodesic

immersed 2-sphere of constant curvature one.
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Consider the set R of geodesic segments c : [0, π] → M for which π is a conjugate point

with multiplicity 1. Note that R is an open set in the set of all geodesic segments of length

π. Indeed, the multiplicity of a limit of geodesics of length π can only go up. Moreover,

since the spherical rank is positive, every such geodesic has multiplicity at least 1. Finally

R is not empty as it contains γ|[0,π].

Lemma 1.6. Suppose c ∈ R and J is a Jacobi field along c that vanishes at 0 and π with

‖J ′(0)‖ = 1. Put v := ċ(0) and w = J ′(0).
Then there is a unique maximal number sm ∈ (0, π] such that

h(s, t) = exp
(
t(cos(s)v + sin(s)w)

)
, with t ∈ [0, π] and s ∈ [−sm, sm]

parameterizes a totally geodesic immersed spherical slice of constant curvature 1. If sm < π

then one of the boundary geodesics h(±sm, t) is not contained in R. If sm = π then the

image of h is a totally geodesic immersed 2-sphere.

Proof. We first want to show that we can indeed chose sm > 0. Let v ∈ TpM be the initial

vector of c. Denote by T 1
pM the unit sphere in TpM . Consider the map φ : T 1

pM → M given

by w 7→ exp(πw), and set q = φ(v). Since the spherical rank is positive, φ has a singular

differential everywhere. At v the kernel of the differential is precisely one dimensional since

c ∈ R. It follows that φ is of constant rank in a neighborhood of v. By the implicit function

theorem, the fibers φ−1(x) are 1-dimensional submanifolds for x in a neighborhood of q.

The curve φ−1(q) defines a variation of geodesics f(s, t) of c(t) of length π with constant

starting and ending point. From Proposition 1.3 we deduce that c is contained in a spherical

slice. Since there is up to constant factor only one Jacobi field along c that vanishes at 0 and

π this spherical slice is necessarily contains h(s, t) for all (t, s) ∈ [0, π]× [−sm, sm] provided

that sm > 0 is chosen sufficiently small. This proves sm > 0 and clearly we may choose

sm ∈ (0, π] maximal.

Consider next the case of sm < π. Notice that J±(t) =
∂h
∂s
(±sm, t) is a Jacobi field along

the boundary geodesic c±(t) = h(±sm, t). If c± ∈ R, then the previous argument shows

that we can increase sm contradicting our choice of sm. �

Consider again the geodesic γ from Lemma 1.4. Since M has positive spherical rank and

γ has index at most 1, it follows that l(γ) = 2π. We parameterize γ on the interval [−π, π].

Proposition 1.7. The closed geodesic γ of length 2π and index 1 is contained in a totally

geodesic, isometrically immersed S2 of constant curvature 1.

Proof. We construct two continuous vector fields X+ and X− along γ that are defined as

follows:

(i) X+(t) = 0 for all t < 0 and X−(t) = 0 for all t > 0.

(ii) X+(t) is a non-vanishing Jacobi field on [0, π] and X−(t) is a non-vanishing Jacobi

field on [−π, 0].

Note that the index form of γ restricted to the two dimensional subspace spanned by

X+ and X− is 0. Since the index of γ is at most 1, it follows that the two dimensional
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space spanned by X+ and X− must contain a Jacobi field J = aX++ bX−. By the equality

discussion of the Rauch comparison theorem, X± looks like sin(t)E± on the intervals where

they are non-zero; here E± are parallel vector fields. Since X is a smooth Jacobi field on

[−π, π] it follows by computing X ′ that J(t) = sin(t)X(t), where X = aE+ = bE− i.e., J

is a periodic Jacobi field. Moreover, X(t) is a closed, parallel vector field along γ such that

sec(γ′(t),X(t)) = 1 for all t.

The vector fields sin(t)X(t) and cos(t)X(t) are periodic Jacobi fields along γ. From the

previous lemma it follows that there is an ǫ > 0 such that

exp(sX(t)), t ∈ [−π, π] and s ∈ [−ǫ, ǫ]

parameterizes a totally geodesic spherical tube. Notice that there are lots of closed geodesics

in this tube. Every one of the closed geodesics in the tube is homotopic to γ via a homotopy

γs satisfying the first two conditions of Lemma 1.4. By the same lemma it follows that the

third condition must be violated i.e., each of the closed geodesics in the tube must have

index one in the free loop space. Therefore, there is no obstruction to increase ε. In other

words, we may choose ε = π/2 and thus γ is contained in a totally geodesic immersed S2

of constant curvature 1. �

It is important to notice that each of the closed geodesics in the constant curvature S2

constructed above has index 1 in the free loop space. This implies that along every geodesic

t = π is a conjugate point with multiplicity 1.

Proposition 1.8. Suppose M has sec ≤ 1 and positive spherical rank. Then all geodesics

in M are closed.

Proof. Consider the following subsets of T 1M , the unit tangent bundle of M .

S1 =

{
v ∈ T 1M

∣∣∣ v tangent to a totally geodesic immersed S2
v and all geodesics

c : [0, π] → S2
v have a conjugate point of multiplicity 1 at π.

}

S2 =

{
v ∈ T 1M

∣∣∣ v tangent to a totally geodesic immersed S2
v and all geodesics

c : [0, 2π] → S2
v have index 1 in the free loop space ΩM .

}

Let v0 ∈ T 1M denote the initial velocity vector of the closed geodesic γ of length 2π.

Then one can see that S2 ⊂ S1 ⊂ T 1M . Furthermore S2 is non-empty since it contains v0
and S2 is closed.

Next we claim that S1 is open. Let w ∈ S1 and let S2
w be as in the definition of S1.

Suppose a sequence wi ∈ T 1M converges to w. For i sufficiently large there is a unique

spherical Jacobi field sin(t)Xi(t) along the geodesic ci(t) = exp(twi), t ∈ [0, π]. Suppose for

a moment that wi

is not tangent to a totally geodesic immersed 2 sphere. By Lemma 1.6 wi is tangent to

a spherical slice such that one of the boundary geodesics is not contained in R. Since a

subsequence of the boundary geodesics converges to a geodesic in S2
w and R is open this is

impossible. In other words wi is tangent to a totally geodesic immersed sphere S2
wi
. Since

the geodesics in S2
wi

converge to geodesics in S2
w we deduce that wi ∈ S1 for almost all i.
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Next we finish up the proof of the proposition by showing S2 = M . Suppose, on the

contrary that S2 6= M . Choose a path h(s) ∈ T 1M with h(0) = v0 and h(1) ∈ T 1M \ S2.

Since S1 is an open neighborhood of the closed set S2 we may assume that h(s) ∈ S1 for

all s ∈ [0, 1]. Furthermore we may assume that c1(t) = exp(th(1)) (t ∈ [0, 2π]) is one of the

closed geodesics in S2
h(1) of index at least 2. Thus

cs(t) = exp(th(s)) for t ∈ [0, 2π], s ∈ [0, 1]

defines a homotopy of closed geodesics of length 2π satisfying all three conditions of Lemma 1.4

which is a contradiction. �

1.4. M is a Blaschke manifold.

We now show that M is Blaschke i.e., inj(M) ≥ π. By the previous subsection all

geodesics of M are closed. This enables us to apply the following index parity theorem (cf.

[Wil01]):

Theorem 1.9 (Wilking). Let Mn be an oriented Riemannian manifold all of whose geodesics

are closed, and let c : [0, 1] → M be a closed geodesic. Then the index of c in the free loop

space of M is even if M is odd-dimensional and it is odd if M is even-dimensional.

Proof that M is Blaschke. We argue by contradiction and assume that injM < π. Then

by the generalized injectivity radius estimate of Klingenberg, there exists a shortest closed

geodesic α of length 2 injM . By the Long Homotopy Lemma (Lemma 1.1) we know that α

is not freely null homotopic in the space of all curves of energy less than 2π2 (or all curves

of length shorter than 2π). In particular, it follows that the curves of length less than 2π

form a disconnected set such that α and the point curve lie in distinct components. On

the component containing α, the energy functional attains a minimum at α and hence α

has index 0 in the free loop space. However, if M is even-dimensional, then the index of

α must be odd by the index parity theorem which leads to a contradiction. If M is odd

dimensional consider the closed geodesic γ constructed in Section 1.2. By construction, γ

has index exactly 1. Once again this contradicts the index parity theorem as the index of

γ is required to be even. �

2. A special case of the Blaschke conjecture

We have shown that if M is a complete, simply connected, Riemannian manifold with

sec ≤ 1 and with positive spherical rank, then injM = diamM = π i.e., M is a Blaschke

manifold with extremal diameter (and injectivity radius). In this section we complete the

proof of the main theorem by proving the following proposition which is special case of the

Blaschke conjecture.

Proposition 2.1. Let M be a simply connected Blaschke manifold with sec ≤ 1 and ex-

tremal value of diameter (and injectivity radius) equal to π. Then M is isometric to a

compact, rank one symmetric space.
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As we noted in the introduction, the above result has already been proved by Rovenskii

and Toponogov in [RT96]; they also use Toponogov’s theorem below. The proof given here

has the slight virtue of being shorter. To be more precise we reduce the problem to two

older theorems: one due to V. Toponogov (see [Top74]) and the other due to M. Berger (see

[Ber78]).

Theorem 2.2 (Toponogov). Let M be a complete, simply connected, Riemannian manifold

such that secM ≤ 1. Suppose M contains a closed geodesic γ of length 2π and index k− 1.

Then γ is contained in an isometrically embedded, totally geodesic, sphere Sk of constant

curvature 1.

It should be noted that the proof of Toponogov’s theorem is not very hard in the special

case that M is Blaschke. In that case the map

fp : T
1
pM → M , v 7→ exp(πv) has constant rank for all p ∈ M , namely the rank equals

n−k, where k−1 is the index of a closed geodesic of length 2π or equivalently the multiplicity

of the conjugate point at π. Thus the fibers of fp are submanifolds and using Proposition 1.3

it is easy to see that the fibers are great spheres of dimension k − 1. Furthermore one can

use Proposition 1.3 to see that exp(R · f−1
p (q)) is a totally geodesic sphere of dimension k

and of constant curvature 1.

Before we state Berger’s theorem some notation is required. An SC2a-manifold is one in

which every geodesic is simply closed and periodic with period 2a. It is well known that a

Blaschke manifold

with inj = diam = a is an SC2a-manifold (cf. [Bes78, Chapter 7]). In our situation,

we have a Blaschke manifold which happens to be an SC2π-manifold, so every geodesic is

simply closed with period 2π.

Given two points p, q at distance π on a Riemannian manifold M , let Σπ(p, q) denote the

set of all shortest geodesics from p to q. It is shown in [Bes78] that in this case Σπ(p, q) is

homeomorphic to a sphere Sk, where k − 1 is the index of a closed geodesic through p and

q. If for all tuples (p, q)

with d(p, q) = π, the set Σπ(p, q) is totally geodesic, then, following Berger [Ber78], M is

called a totally geodesic Blaschke manifold.

Theorem 2.3 (Berger). Let M be a simply connected, totally geodesic Blaschke manifold.

Then M is isometric to a compact, rank one symmetric space i.e., isometric to Sn, CP
n
2 ,

HP
n
4 or CaP2.

Proof of Proposition 2.1. If a complete, simply connected Riemannian manifold has sec ≤ 1

and positive spherical rank, then it is an SC2π Blaschke manifold. So every geodesic in M

is simply closed, has length 2π and index at least 1.

Pick any geodesic γ of length 2π and index k− 1 ≥ 1 and pick two points p, q on γ which

are π apart. By Toponogov’s theorem γ is contained in a totally geodesic, isometrically

embedded Sk of constant curvature 1. By construction we have Sk ⊂ Σπ(p, q). But Σπ(p, q)

is also a k-dimensional sphere because of the index estimate on γ. Moreover, Σπ(p, q) is
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connected which implies Sk = Σπ(p, q) and M is a totally geodesic Blaschke manifold. By

Berger’s theorem M must be isometric to a CROSS. �

3. Some Examples

In this section we explore another notion of spherical rank that is analogous to Hamenstädt’s

notion of hyperbolic rank. More precisely, consider the following:

Definition. Let Mn be a compact Riemannian manifold. Suppose along every geodesic

γ(t) in M there exists a normal Jacobi field J(t) such that sec(γ′(t), J(t)) = 1. If sec ≤ 1,

we say that Mn has weak upper spherical rank at least 1. If sec ≥ 1, we say that Mn has

weak lower spherical rank at least 1.

In the case of stronger notions of rank we have seen various rigidity results, most of them

implying that the universal cover must be locally isometric to a symmetric space. We direct

the reader to Table 1 for some of the known results. As is indicated there (metric) rigidity

no longer holds for weak spherical rank (upper or lower). The main purpose of this section

is to verify that claim.

Compact manifolds

∀γ, there exists a ∀γ, there exists a

Curvature Jacobi field J s.t. parallel vector field E s.t.

bound sec(J, γ′) is extremal sec(E,γ′) is extremal.

the universal cover of M is symmetric

sec ≤ 0 ? or isometric to a product;

cf. [Bal85], [BS87].

M is isometric to

sec ≤ −1 a locally symmetric space, ⇒

cf. [Ham90].

sec ≤ 1 non-symmetric examples exist. M is locally isometric to a CROSS.

[ibid.]

sec ≥ 1 non-symmetric examples exist. ?

there are simply connected, irreducible

sec ≥ 0 ⇐ examples which are not homeomorphic

to symmetric spaces, cf. [Heintze],[SS90].

sec ≥ −1 ? ?

Table 1. Rank rigidity for various curvature bounds.
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3.1. The Berger spheres. We present here, briefly, the construction of the so called

Berger spheres. This is the scaling of the round metric on a sphere; we will specifically look

at S3. The Berger spheres are important examples and originally were constructed by M.

Berger in [Ber78] to show that in odd dimensions, Klingenberg’s injectivity radius estimate

fails if the pinching is below 1
9 .

One may regard the round 3-sphere as the unit sphere in the quaternions H. The Lie

algebra is spanned i, j and k. These vectors are orthonormal with respect to a induced

bi-invariant metric on S3 of constant curvature 1.

The Berger metric is obtained upon scaling the fibers of the Hopf fibration S3 → S3/S1 =

S2 where S1 is the image of the 1-parameter group exp(ti). More precisely, consider a family

of left invariant metrics gη on S3 which are defined by gη(i, j) = gη(i, k) = gη(k, j) = 0,

‖j‖gη = ‖k‖gη = 1 and ‖i‖gη = η.

It is then routine to check that sec( 1
η
X1, sX2+

√
1− s2X3) = η2, sec(X2,X3) = 4−3η2,

and η2 and 4− 3η2 are minimum and maximum of the sectional curvature; the Hopf fiber

has length 2πη (for the calculation, see for instance [CE75], Example 3.35). Note that if

η > 1, then the range of curvatures is [4− 3η2, η2].

In order to find a non-symmetric example with weak lower spherical rank take η < 1

i.e., shrink the Hopf fiber and then normalize the metric to make the lower bound 1. If γ

is a vertical geodesic then all planes containing γ′(t) have curvature 1. If γ is not vertical

then the Killing field corresponding to the Hopf field i induces a Jacobi field J along γ with

sec(J, γ′) = 1. Notice that J is not necessarily normal but one may replace J by its normal

part.

For weak upper spherical rank, take η > 1 i.e., enlarge the Hopf fiber (we may choose

η < 2√
3
to ensure positive curvature). Normalize again to make the upper curvature bound

1 and as before it follows that the weak upper spherical rank is 1.

Of course the Berger spheres in higher dimensions also have positive weak upper or lower

spherical rank. Thus there are non-symmetric examples in all odd dimensions above 2.

It remains unclear whether the assumption on weak spherical rank implies that the man-

ifold is topologically a symmetric space. We leave that as a question for further study.
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Boston, 1998.

[SS90] R. Spatzier and M. Strake, Some examples of higher rank manifolds of non-negative curvature, Comm.

Math. Helv., vol. 65 (1990), 299–317.

[Top74] V. Toponogov, Extremal theorems for Riemannian spaces with curvature bounded from below,

Sibirskii Math. J., vol. 15(6)

(1974), 1348–1371.

[Wil01] B. Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math. vol. 144

(2001), 281–295.

Department of Mathematics, University of Oklahoma, 601 Elm Ave., Norman, OK 73019.

E-mail address: shankar@math.ou.edu

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109.

E-mail address: spatzier@umich.edu

Mathematisches Institut der Uni Münster, Einsteinstr. 62, 48149 Münster, Germany.

E-mail address: wilking@math.uni-muenster.de


	Introduction
	1. Positive Spherical Rank implies Blaschke
	1.1. Preliminaries
	1.2. Existence of a closed geodesic of length at least 2 and index 1
	1.3. All geodesics in M are closed
	1.4. M is a Blaschke manifold

	2. A special case of the Blaschke conjecture
	3. Some Examples
	3.1. The Berger spheres

	References

